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Introduction

The use of optimization algorithms for solving the inverse problem
in subsurface hydrology is a common practice. The classes of
optimization algorithms include local derivative algorithms, global
heuristic algorithms, hybrid global-heuristic local-derivative algo-
rithms, and global-local heuristic algorithms. While the local
derivative algorithms are computationally efficient and can handle
a larger number of unknown model parameters, this can be at the
cost of finding local solutions instead of a near global solution. The
second class of algorithms is the global heuristic algorithms, which
are generally implemented when a gradient search is not successful.
The heuristic algorithms are experience-based techniques that
utilize simple to complex forms of learning to escape local optima
and improve the solution. Many studies use global heuristic
algorithms such as the genetic algorithm (ElHarrouni et al. 1996;

Karpouzos et al. 2001; Solomatine et al. 1999; Bastani et al. 2010)
and particle swarm optimization (Scheerlinck et al. 2009; Jiang
et al. 2010; Krauße and Cullmann 2012) to avoid entrapment at
local minima. This class of algorithms might experience poor local
convergence properties. Thus, a third class of algorithms for solv-
ing the inverse problem in subsurface modeling is to use the hybrid
global-heuristic local-derivative algorithms (Tsai et al. 2003a, b;
Blasone et al. 2007; Matott and Rabideau 2008; Zhang et al.
2009), which run a global heuristic algorithm for exploring the
search landscape followed by a local derivative algorithm for ex-
ploiting favorable search regions. The fourth class of algorithms
is the global-local heuristic algorithms, which can perform both
global search and local convergence without the need of combin-
ing two different algorithms. For solving the inverse problem in
groundwater modeling and quantifying model parameter uncer-
tainty, this study investigates the sequential and parallel perfor-
mance of the covariance matrix adaptation-evolution strategy
(CMA-ES) (Hansen and Ostermeier 2001; Hansen et al. 2003) as
a global-local stochastic derivative-free algorithm for groundwater
model calibration and parameter uncertainty quantification.

The CMA-ES is becoming popular within the environmental
modeling community particularly for solving groundwater design-
optimization problems (Bayer and Finkel 2004, 2007; Bürger et al.
2007; Bayer et al. 2008, 2010) and for solving parameter estimation
problems (Skahill et al. 2009; Keating et al. 2010; Bledsoe et al.
2011; Elshall et al. 2013; Razavi and Tolson 2013; Tsai and Elshall
2013; Yu et al. 2013; Arsenault et al. 2014; Elshall and Tsai 2014).
For parameter estimation, few studies (Skahill et al. 2009; Bledsoe
et al. 2011; Arsenault et al. 2014) compared the performance of
CMA-ES to other derivative and derivative-free algorithms. How-
ever, these studies used CMA-ES with the default population size.
CMA-ES is quasi-parameter free with the population size being the
only parameter to be tuned by the user. Increasing the population
size will generally improve the solution precision since the local
search of CMA-ES will become more global. However, increasing
the population size encourages global exploration at the expense of
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convergence speed (Skahill et al. 2009). While this is true for the
sequential implementation, this study shows that increasing the pop-
ulation size will significantly improve the computational efficiency
for the parallel CMA-ES implementation.

Parallel inverse modeling with CMA-ES can be implemented by
an embarrassingly parallel technique. Algorithms that utilize inde-
pendent solutions in each iteration allow for embarrassingly paral-
lel computation (Vrugt et al. 2006, 2008; Tang et al. 2007, 2010).
This is the most efficient parallel technique since the solutions in
each iteration do not communicate, as explained later. The first ob-
jective of this study is to show that the parallel CMA-ES superiorly
improves the calibration speed over the sequential CMA-ES. In ad-
dition, the speedup of parallel runs scales variably with increasing
the number of processors, which is equal to the population size,
up to a certain limit. This study makes an addition to the aforemen-
tioned literature on the CMA-ES since this is the first work to the
authors’ knowledge that examines the parallel performance of the
CMA-ES in subsurface hydrology.

The second objective of this study is to investigate the use of the
CMA-ES to quantify the model prediction uncertainty due to the
parameter estimation error. The solution of the CMA-ES, which
consists of a maximum likelihood estimate and a full covariance
matrix of estimated model parameters, can be used for uncertainty
analysis. Several studies have proposed the utilization of the covari-
ance matrix for sampling target distributions (Haario et al. 1999,
2001; Kavetski et al. 2006a, b; Gallagher and Doherty 2007; Smith
and Marshall 2008; Cui et al. 2011; Lu et al. 2012). However, all
studies used a covariance matrix within the Markov chain Monte
Carlo (MCMC) scheme such that the covariance matrix is used as a
proposal distribution to initialize Metropolis-MCMC algorithms or
for checking the convergence of MCMC. As pointed out by Müller
(2010), the CMA-ES shares many common concepts and features
with the derivative-free MCMC simulation algorithms (e.g., Haario
et al. 1999, 2001, 2006; Andrieu and Thoms 2008; Müller and
Sbalzarini 2010) because both MCMC algorithms and the CMA-
ES algorithm are distribution estimation algorithms. However, the
MCMC algorithms are more general since they can be used to
estimate and sample any probability distribution of the parameters,
while the CMA-ES algorithm assumes a multi-Gaussian distribu-
tion and estimates a full covariance matrix of the estimated param-
eters. A formal theoretical and computational comparison between
the proposed sampling method and MCMC is beyond the scope of
this study, yet this is warranted in a future study.

The sampling method proposed in this study has the following
three practical advantages. First, the estimated covariance matrix,
which is a by-product of the calibration process, is useful for
modeling approaches that attempt to separate various sources of
model prediction uncertainty (e.g., Elshall and Tsai 2014) in com-
parison to the approaches that provide lumped prediction uncer-
tainty. Second, the estimated covariance matrix can be used
to generate samples with efficient analytical techniques such as
the Cholesky decomposition. Unlike the MCMC sampling meth-
ods, Cholesky decomposition sampling can be done independently
without the need of model evaluation. Third, this study shows that
after reaching a target distribution representing the maximum like-
lihood estimate of the model parameters and their covariances, the
parameter estimation error can be quantified with a relatively small
number of Monte Carlo realizations. To the authors’ knowledge,
this is the first work that investigates the use of the CMA-ES
to quantify model parameter uncertainty and model prediction
uncertainty.

The organization of the study is as follows. The parallel CMA-
ES algorithm is presented in the next section. A challenging syn-
thetic groundwater inverse problem is designed to test the CMA-ES

performance against five other commonly used derivative and
derivative-free algorithms. Then, the solution of the CMA-ES is
analyzed to assess the plausibility of using the empirically esti-
mated covariance matrix to quantify head prediction uncertainty.
Impact of the population size is evaluated for the sequential and
parallel performance of the CMA-ES. Finally, the parallel CMA-
ES is applied to calibrate two computationally demanding ground-
water models of the Baton Rouge aquifer system, Louisiana, and to
analyze head prediction uncertainty.

Method

For complex groundwater models that generally take hours to run,
using the sequential CMA-ES for solving the groundwater inverse
problem is impractical due to the prohibitive computational cost.
This study resolves this computational issue by implementing
the CMA-ES in a high-performance computing (HPC) cluster using
an embarrassingly parallel master/slave technique. The embarrass-
ingly parallel master/slave technique treats the individual solutions
as explicit tasks that do not communicate with each other, and
assigns each task to a processor. Thus, embarrassingly parallel
problems are the easiest to parallelize and have negligible paralle-
lization overhead. This section explains the parallelization scheme
and the role of population size in increasing the parallelization
efficiency.

Given an optimization problem with a search space dimension
n, λ candidate solutions, and μw best solutions, the iterative solu-
tion of the CMA-ES using a master/slave technique is as follows.
First, at the master node at any search step g ≥ 1, the ðμw; λÞ −
CMA-ES samples vi ∈ ℝn, ∀ i ¼ 1 : : :λ candidate solutions from
a multivariate normal distribution π½vðgþ1ÞjmðgÞ;σðgÞCðgÞ� with
mean vector mðgÞ, step size σðgÞ, and covariance matrix CðgÞ. The
step size σðgÞ is a scalar that controls the global step length. The
covariance matrix CðgÞ determines the shape of the search distribu-
tion ellipsoid. These candidate solutions are distributed to the slave
nodes to run the simulation models and calculate the fitting errors
fðviÞ ∈ ℝ, ∀i ¼ 1 : : : λ accordingly. Since the internal computa-
tional time of the algorithm is negligible in comparison to a single
groundwater forward model run, the parallel implementation is λ
times faster than the sequential implementation, given a number of
processors equal to the number of solutions. Third, the computing
nodes pass the fitting errors to the CMA-ES at the master node to
compute the weighted recombination of the best solutions μw out
of all the solutions λ. Then, the search parameters are updated,
and new solutions are sampled and passed to the slave nodes for
the next iteration. The search parameters are the distribution mean
mðgÞ ∈ ℝn, the overall step size σðgÞ > 0, the symmetric and
positive definite covariance matrix CðgÞ ∈ ℝnxn, and the two self-
adaptive search paths pσ ∈ ℝn and pc ∈ ℝn that act as conjugates
for the step-size update and covariance matrix update, respectively.
For the update procedures of these five parameters, the reader is
referred to Hansen et al. (2003). A flowchart (Fig. S1) of the
parallel implementation of the CMA-ES algorithm is provided in
the supplementary materials. Here the authors only briefly discuss
covariance matrix update since it has an important implication on
the parallel implementation of the CMA-ES.

The adaptation of the covariance matrix Cg, which learns all
pairwise dependencies between the decision variables, follows a
natural gradient approximation of the expected fitting error since
there is a close relation between the covariance matrix and the
Hessian matrix. The search path pðgÞ

c , which captures the relation
between consecutive steps, is calculated to update the covariance
matrix Cg
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Cðgþ1Þ ¼ ð1 − c1 − cμÞCðgÞ þ c1p
ðgþ1Þ
c pðgþ1ÞT

c|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
rank-one update

þ cμ
Xμ
i¼1

wi
vðgþ1Þ
i∶λ −mðgÞ

σðgÞ

�
vðgþ1Þ
i∶λ −mðgÞ

σðgÞ

�T
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rank-μ update

ð1Þ

where c1 ≤ 1 − cμ are learning rates, wi ∈ ℝ∀i ¼ 1 : : :μ are the
recombination weights following a log scale, and vðgþ1Þ

i∶λ are the best
solutions out of vðgþ1Þ

i , ∀i ¼ 1 : : :λ. Eq. (1) shows that the covari-
ance matrix adaptation is based on two principles, which are the
rank-one update and the rank-μ update. The rank-one update de-
pends on the search paths pσ and pc containing information about
the correlation between successive successful steps, and the rank-μ
update can be interpreted as the maximum likelihood estimation as
the adaptation increases the weighted log-likelihood of previous
samples with higher fitness values (Akimoto et al. 2012). The
rank-one update of the covariance matrix reduces the number of
function evaluations to adapt to a straight ridge from Oðn2Þ to
OðnÞ (Hansen et al. 2003). Thus, important parts of the model
can be learned in an iteration order of n. The rank-one update is
important to maintain efficient and premature convergence for a
small population size λ. The rank-μ update extends the update rule
for large population sizes by using μ vectors to update C at each
step, and thus increases the learning rate for large population sizes
and consequently reduces the number of necessary iterations. Yet,
increasing the population size λ will increase the number of func-
tion evaluations. However, for the parallel implementation of the
CMA-ES, increasing the population size will not only improve
the solution, but also accelerate the convergence, which is shown
in both the synthetic groundwater flow model and the two Baton
Rouge groundwater flow models.

Synthetic Groundwater Inverse Problem

A synthetic steady-state groundwater inverse problem is designed
to analyze the CMA-ES performance for parameter estimation and
uncertainty quantification. The numerical model consists of an un-
confined aquifer with a thickness of 400 m and a confined aquifer
with a thickness of 100 m, separated by an aquitard with a thickness
of 100 m. The top elevation of the model is 200 m. The horizontal
domain is 4,500 by 4,500 m and is discretized into 81 computa-
tional cells as shown in Fig. 1(a). Each cell is 500 by 500 m. The
unconfined aquifer has a fixed head 1 m at the western boundary
and is impervious for other three boundaries. The boundaries of
the confined aquifer and the aquitard are impervious. Hydraulic

conductivity (m=s) for the unconfined aquifer is of two zones,
shown in Fig. 1(b):

Kðx; yÞ ¼
�
1 × 10−2 for x > 2; 000 m
7 × 10−2 for x ≤ 2; 000 m

ð2Þ

The confined aquifer has a heterogeneous transmissivity field
(m2=s)

Tðx; yÞ ¼ −20π cosðπxÞ sinðπyÞ − 20π sinðπxÞ cosðπyÞ
þ 40π2ð1þ xþ yÞ cosðπxÞ cosðπyÞ ð3Þ

The vertical hydraulic conductance of the aquitard is
5 × 10−8 m2=s. Two injection wells are located in the relatively
low conductivity zone of the unconfined aquifer with the injection
rate of 10 m3=d for each well. One pumping well is located in the
relatively high conductivity zone of the unconfined aquifer with
pumping rate of 20 m3=d. The well locations are shown in
Fig. 1(a). The uniform surficial recharge rate of 5 × 10−5 m2=s
is applied to the unconfined aquifer. MODFLOW-2005 (Harbaugh
2005) is used to solve the steady-state flow problem.

Model Parameter Estimation

The 81 cell values of hydraulic conductivity of the unconfined
aquifer are assumed not known and are estimated by minimizing
the sum of squared errors as follows:

min
K∈Rn

XL
i¼1

½hobsi − hiðKÞ�2 ð4Þ

where hobsi is the ith observed groundwater head; hiðKÞ is ith
simulated groundwater head; andK ∈ Rn is a vector of n ¼ 81 un-
known hydraulic conductivity values. A complete set of error-free
head data (81 head values from the unconfined aquifer and 81 head
values from the confined aquifer) is used to eliminate the issues of
data error and data sufficiency while evaluating the algorithm
performance. Therefore, the data set size is L ¼ 162. The initial
values of the CMA-ES parameters are pð0Þσ ¼ pð0Þc ¼ 0, Cð0Þ ¼ I,
v ¼ randðnÞ, and σð0Þ ¼ 0.5 with the default strategy parameters
(Hansen et al. 2003).

Performance Evaluation and Comparison

Using the synthetic model for which the true solution is known,
five commonly used global heuristic and local derivative algo-
rithms were used to demonstrate the relative performance of
CMA-ES in handling several practical challenges, such as high

Fig. 1. Synthetic problem: (a) plan view of the pumping well and injection wells; (b) two-zone hydraulic conductivity field for the unconfined aquifer
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dimensionality, nonseparablity, and noise. Four global population-
based algorithms are considered, which are the ant colony optimi-
zation for real domain (Socha and Dorigo 2008), the particle swarm
optimization (Iwasaki et al. 2006), the modified deferential evolu-
tion (Babu and Angira 2006), and the genetic algorithm (Haupt and
Haupt 2004). The ant colony optimization for real domain (ACOR)
is selected since it shares the feature of probability distribution
estimation with CMA-ES. The particle swarm optimization (PSO)
is selected since it is known for its computational efficiency and it
is the second most published heuristic algorithm after the genetic
algorithm (GA). The modified deferential evolution (mDE) is
selected since it belongs to the same class of evolutionary compu-
tation of the CMA-ES. In addition, the local derivative Levenberg-
Marquardt (L-M) algorithm (Marquardt 1963) is considered.
Parameters for each algorithm were tuned to achieve its most
effective and efficient performance. In addition, five runs were
conducted for each algorithm and the best solution was selected.

Fig. 2 shows the best solutions of the six algorithms and only the
CMA-ES succeeded in reaching the true solution. The results are
consistent with the findings of Arsenault et al. (2014) that mDE,
GA, and PSO performances are generally less robust in comparison
to the CMA-ES. The mDE, GA, and ACOR are unable to handle
the search difficulties. However, the poor performance of ACOR
was unexpected since theoretically the ACOR can handle non-
separable functions by invoking correlations between decision
parameters and can adapt to a rotating search space. This poor
performance may be attributed to the fixed step size of ACOR.
The L-M and PSO succeed in recognizing the two hydraulic con-
ductivity zones, but are unable to overcome the noise at the eastern
boundary of the low conductivity zone, resulting in imprecise
hydraulic conductivity estimation. Since the L-M and PSO cannot
effectively exploit the correlation of distinct conductivity zones,
the high-conductivity zone does not smooth out. The CMA-ES
overcomes these two pitfalls by utilizing the second-order learn-
ing through the adaptation of the covariance matrix along with
the careful adaptation of the step size to allow for systematic
convergence.

The aim of the algorithm comparison is to demonstrate the rel-
ative performance of the CMA-ES in handling several practical
challenges, such as high dimensionality, non-separability and
noise. This is done to introduce the results in Fig. 3 to show that

precise estimation of the covariance matrix is not a trivial task
since it requires precise estimation of the model parameters.

The CMA-ES performance is further analyzed by showing the
solution progress up to 5,000 iterations in Fig. 3. The CMA-ES first
detects the hydraulic conductivity structure at iteration 400 and
then overcomes the noise through careful adaptation of the step
size. After iteration 5,000, the sum of squared errors is negligible
and the estimated hydraulic conductivity field is close to the true
field [Fig. 1(b)]. The variances of estimated conductivities decrease
as the best solution improves and the candidate solutions converge.
As the fitting error is significantly reduced at iteration 5,000,
the two-zone variance field reflects the two-zone K field and
estimation error.

One of the advantages of using the CMA-ES is to quickly obtain
the variances of estimated heads once the optimal solution is
reached. Fig. 4(a) shows the convergence of the mean head vari-
ance [m2] of the 81 cells of the unconfined aquifer derived from
10,000 realizations of the hydraulic conductivity field for every
100 iterations. The realizations are obtained from the Monte Carlo
simulation given the best solution and the covariance matrix of the
estimated K field obtained by the CMA-ES. At early iterations, the
mean head variance is not necessarily monotonically decreasing
because different local minima are sampled along the iterations.
The mean head variance decreases and gradually converges after
3,000 iterations. As shown in Fig. 4(b), at early iterations the con-
vergence of the mean head variance requires a large number of real-
izations and the resulted variance is large due to using incorrect
mean and incorrect covariance matrix. After reaching the optimal
solution, the mean head variance quickly converges within 100
realizations and the magnitude of the variance is small. Achieving
quick convergence of head variances by only a small number of
realizations is mainly because the CMA-ES is able to derive smaller
parameter estimation variances and more accurate correlations be-
tween the estimated parameters.

CMA-ES Population Size

The population size has an important influence on the efficiency of
the CMA-ES in terms of the number of iterations and the number of
function evaluations to reach stopping criteria. Fig. 5(a) shows the
impact of the population size on the number of function evaluations
in the sequential run of the CMA-ES. In general, more function

Fig. 2. Hydraulic conductivity solutions for the unconfined aquifer: modified deferential evolution (mDE), genetic algorithm (GA), ant colony
optimization for real domain (ACOR), Levenberg-Marquardt (L-M), particle swarm optimization (PSO), and CMA-ES
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evaluations are needed to reach solutions that produce smaller
fitting error. The default population size λ ¼ 4þ b3 lnðnÞc ¼ 17

and the population size λ ¼ 50 cannot meet the fitting error cri-
terion 10−3. Since the CMA-ES can detect the global topology
by increasing the population size (Hansen and Kern 2004), increas-
ing the population size improves the solution precision. However,
increasing the population size increases the number of function

evaluations to reach the stopping criteria. According to Fig. 5(a),
the optimum population size is 100 for the sequential run.

Increasing the population size is advantageous for the parallel
runs of the CMA-ES. Since rank-μ update can effectively exploit
the information contained in large population sizes, required iter-
ations can be significantly reduced to reach a certain fitting error.
As shown in Fig. 5(b), more iterations are needed to reach solutions

Fig. 3. Solution progress of fitting error, step size, estimated hydraulic conductivity (K), and variance after 1, 400, 800, 1,000, and 5,000 iterations
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that produce smaller fitting error. By distributing the candidate
solutions of size λ to a number of processors λ, the paralell CMA-
ES scales favorably with increasing the number of processors.
For example, distributing 100 candidate solutions to 100 process-
ors, the required number of iterations to reach a fitting error 1 ×
10−3 is 2,499. The number of iterations is reduced to 964 for using
600 candidate solutions on 600 processors. However, the favorable
scaling with increasing the number of processors has a limit. For
example, using the population size 700 needs more iterations than
using the population size 600 in this case. This finding is consistent
with the results of Hansen and Kern (2004) on eight test functions,
which show that the scaling could have a convex shape. The opti-
mum population size for the parallel run is about λ ≈ 7.4n for the
synthetic problem.

Case Study: Baton Rouge Groundwater Models

The study area shown in Fig. 6 includes a major part of the Baton
Rouge metropolitan area. The Baton Rouge aquifer system consists
of complexly interbedded series of fluvial sand and clay units with

variable thickness from 6 to 91 m that extends to a depth of 914.4 m
(Tomaszewski 1996; Chamberlain 2012). The east-west trending
Baton Rouge fault and Denham Springs-Scotlandville fault cut
across these sand and clay units. This study develops groundwater
models for the 1,200-ft sand, the 1,500-ft sand, the 1,700-ft sand,
and the 2,000-ft sand. These sand units were named by their
approximate depth below ground level in the Baton Rouge indus-
trial district (Meyer and Turcan 1955). The hydrostratigraphic
architecture study (Elshall et al. 2013) shows that the 1,200-ft sand,
the 1,500-ft sand, and the 1,700-ft sand between the two faults are
interconnected and should be modeled together while the 2,000-ft
sand is a separate aquifer. Fig. 7 shows the active computational
cells of the 1,200-1,500-1,700-ft sands model and the 2,000-ft sand
model, which have 45 and 29 layers, respectively. The layer thick-
ness varies from 1 to 6 m. Each layer consists of 93 rows and 137
columns with a cell size 200 × 200 m.

The time-varied constant-head boundary condition is assigned
to all boundary active cells through extrapolation of the nearby
head observation data. Inactive cells represent the clay unit.
Detailed pumpage data are available from the Capital Area Ground
Water Conservation Commission of Louisiana. In December 2010,

Fig. 4. (a) Convergence profile of mean head variances with respect to the number of iterations; (b) convergence profiles of mean head variances with
respect to 10,000 realizations after different iterations for the unconfined aquifer

Fig. 5. Impact of the population size on (a) the number of function evaluations to reach the stopping criteria in the sequential run; (b) the number of
iterations to reach the stopping criteria for parallel run
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Fig. 6. Map of the study area; the coordinate system is meters, UTM (NAD83)

Fig. 7. Active computational cells for (a) the 1,200-1,500-1,700-ft sands model; (b) the 2,000-ft sand model
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the 1,200-1,500-1,700-ft sands model has 87 pumping wells
extracting about 112,556 m3=day and the connector well (EB-1293)
injecting about 2,600 m3=day of groundwater from the 800-ft sand
to the 1,500-ft sand. The 2,000-ft sand model has 29 pumping
wells extracting about 78,457 m3=day in December 2010.
The 1,200-1,500-1,700-ft sands model is calibrated using 2,805
groundwater head records from 20 USGS observation wells from
January 1975 to December 2010. The 2,000-ft sand model uses
1,285 head records from 18 USGS observation wells for the same
period.

For the 1,200-1,500-1,700-ft sands model, the 1,500-ft and the
1,700-ft sand are considered to have the same hydrogeological
parameter values, which are different from the 1,200-ft sand. The
two faults are considered as horizontal flow barriers and their per-
meability is characterized by the hydraulic characteristic (Hsieh
and Freckleton 1993). Hydraulic conductivity, specific storage,
and two hydraulic characteristics for the two faults are estimated.
Thus, the model has eight unknown model parameters. The
2,000-ft sand model has the following six unknown parameters: hy-
draulic conductivity, vertical anisotropy ratio, specific storage, two
hydraulic characteristics for the two faults, and a boundary head ad-
justment factor for the eastern boundary between the two faults. The
prior parameter ranges and the estimated parameter value are shown
in Table 1. The model parameter values are estimated using parallel
CMA-ES by minimizing the root-mean squared error (RMSE) be-
tween the simulated and observed groundwater heads.

The calibration results in Table 1 show that the 2,000-ft sand has
higher hydraulic conductivity and specific storage than the other
three sands. The table shows isotropic hydraulic conductivity for
the 2,000-ft sand. The Baton Rouge fault and the Denham
Springs-Scotlandville fault are low-permeability faults. The Baton
Rouge fault permeability for the 1,500-ft sand and the 1,700-ft sand
is relatively lower than that for the 1,200-ft sand and 2,000-
ft sand. The very low hydraulic characteristic of the Denham
Springs-Scotlandville fault for the 2,000-ft sand indicates that
groundwater in this sand is mainly from the east.

Parallel Performance

The parallel computation was carried using SuperMike-II, a high
performance computer cluster at Louisiana State University with
440 compute nodes. Each compute node is equipped with two
8-Core processors operating at a core frequency of 2.6 GHz.
The execution time for a single model simulation is around 1.89�
0.10 h for the 1,200-1,500-1,700-ft sands model and 1.28� 0.1 h
for the 2,000-ft sand model. It is impractical to conduct model
calibration using a single processor. For example, given that the

algorithm parallelization time is less than 1 s per iteration, the par-
allel calibration time using 80 processors for the 1,200-1,500-
1,700-ft sands model is 75.6 h given 40 iterations with the forward
model run being 1.89 h. The equivalent sequential calibration
would be 75.6 × 80 ¼ 6; 048 h, or about 252 days.

For parallel computation, the population size λ is equal to the
number of processors. The optimal population size for the ground-
water models is determined by performing model calibration with
different population sizes λ ¼ 16, 32, 48, 64, and 80. For the best
performance, Hansen and Ostermeier (2001) and Hansen et al.
(2003) recommended 4þ b3 lnðnÞc ≤ λ ≤ 10n. Thus, λ ¼ 80 was
selected as the maximum population size for the 1,200-1,500-
1,700-ft sands model given n ¼ 8, and λ ¼ 64 as the maximum
population size for the 2,000-ft sand model given n ¼ 6. Note that
the population size λ ¼ 64 for the 2,000-ft sand is slightly over the
recommended range of 10n.

Fig. 8 shows the number of iterations required to meet differ-
ent stopping criteria of the RMSE versus the number of process-
ors. The required number of iterations to reach convergence for
the 1,200-1,500-1,700-ft sands model is about double that of the
2,000-ft sand model. This can be attributed to the larger number
of unknown parameters, the complexity of the geological
structure, and the plausibility of the prior parameter ranges
(Table 1). For both groundwater models, more iterations are
needed for small RMSE criteria. Small RMSE criteria may not
be met using smaller population sizes as the search becomes less
global. For example, as shown in Fig. 8(a) the population size
λ ¼ 16 does not reach the RMSE 1.50-m criterion. Increasing
the population size will always reduce the number of iterations.
Thus, the optimal population size for the 1,200-1,500-1,700-ft
sands model is λ ¼ 80 ¼ 10n and for the 2,000-ft sand model
is λ ¼ 64 ≈ 10.67n. For both models, the optimal population size
is at the upper limit λ ¼ 10n.

Similar to the synthetic problem, Fig. 8 shows that increasing
the population size requires less iterations to reach the fitting
error criteria. As shown in Fig. 8(a), given RMSE 1.57 m for
the 1,200-1,500-1,700-ft sands model, a speedup 84=41 ¼ 2.05
is achieved by the optimal population size (λ ¼ 80) with respect
to the default population size (λ ¼ 16). Given RMSE 2.95 m
for the 2,000-ft sand model, a speedup 55=24 ¼ 2.29 is achieved
by the optimal population size (λ ¼ 64) with respect to the default
population size (λ ¼ 16) as shown in Fig. 8(b).

Groundwater Head Uncertainty

The mean and the covariance matrix of the estimated model param-
eters are used for Monte Carlo simulation to quantify head

Table 1. Parameter Ranges and Estimated Values of the Unknown Model Parameters for Different Sand Units

Parameter

1,200-ft sand 1,500-ft sand and 1,700-ft sand 2,000-ft sand

Range Estimated Range Range Range Estimated

Hydraulic conductivity
[m=d]

15.00 ∼ 35.00 23.13 20.00 ∼ 32.00 25.64 70.00 ∼ 170.00 144.86

Specific storage [1=m] 2.00 × 10−6 ∼ 1.00 × 10−4 5.27 × 10−6 2.00 × 10−6 ∼ 1.00 × 10−4 2.82 × 10−6 1.00 × 10−5 ∼ 3.00 × 10−5 1.86 × 10−5
Vertical anisotropy ratio — — — — 1.00–5.00 1.01
Hydraulic characteristic
of the BRa fault [1=d]

1.00 × 10−4 ∼ 1.00 × 10−2 2.64 × 10−3 1.00 × 10−4 ∼ 1.00 × 10−2 2.48 × 10−4 1.00 × 10−4 ∼ 1.00 × 10−2 4.20 × 10−3

Hydraulic characteristic
of the DSSb fault [1=d]

1.00 × 10−3 ∼ 1.00 × 10−1 6.08 × 10−3 1.00 × 10−3 ∼ 1.00 × 10−1 5.00 × 10−2 1.00 × 10−6 ∼ 1.00 × 10−3 1.34 × 10−6

Boundary condition
adjustment factor [m]

— — — — −5.00 ∼ 5.00 1.36

aBaton Rouge.
bDenham Springs-Scotlandville.
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uncertainty due to parameter estimation uncertainty. Head varian-
ces at USGS observation well EB-291 (screened at the 1,200-ft
sand) in August 1978 and observation well WBR-106 (screened
at the 2,000-ft sand) in September 1976 are calculated since these
two data points show the highest head standard deviation among all

observation data. The location of EB-291 and WBR-106 is shown
in Fig. 6.

Using the optimal parallel population size, Figs. 9(a and b) show
that the improvement of RMSE is negligible after about 50 itera-
tions and 30 iterations for the 1,200-1,500-1,700-ft sands model

Fig. 8. Number of iterations for different population sizes required to reach several target fitting errors for (a) the 1,200-1,500-1,700-ft sands model;
(b) the 2,000-ft sand model

Fig. 9. Convergence profiles of the RMSE [m] and head standard deviation [m] of the selected observation points based on 250 realizations after each
iteration for (a) the 1,200-1,500-1,700-ft sands model; (b) the 2,000-ft sand model. Convergence profiles of head [m] and head standard deviation [m]
for (c) EB-291 in August 1978 after 170 iterations; (d) WBR-106 in September 1976 after 100 iterations
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and the 2,000-ft sand model, respectively, yet the calibration was
not terminated to ensure the convergence of the covariance matrix
estimation. The head standard deviation [m] is calculated based on
250 realizations after each iteration for the selected observation
points as shown in Figs. 9(a and b). The results indicate that the
CMA-ES reaches convergence with respect to covariance matrix
estimation within 170 and 100 iterations for the 1,200-1,500-
1,700-ft sands model and 2,000-ft sand model, respectively. Similar
to the synthetic case it is observed that the estimation of covariance
matrix requires about three times more iterations than the estima-
tion of the mean solution.

Figs. 9(c and d) show the head prediction and the head predic-
tion standard deviation for the selected observation points at the last
iteration intervals for both models. The results are consistent with
the synthetic case study that after reaching the optimal solution, the
mean head variance quickly converges in less than 100 realizations.

Conclusions

The results of the synthetic groundwater inverse problem show that
the CMA-ES is able to detect and overcome the noise at the fixed
head boundary through careful adaptation of the step size along
with the covariance matrix. However, this is computationally de-
manding and requires more iterations than detecting the correct
shape of the hydraulic conductivity field.

The authors clarify the difference between an adequate model
and a precise inverse solution by the case studies. The results
show that the retrieved head standard deviation for the two
groundwater models in the real-world case study is very small
in comparison to the RMSE. The small head standard deviation
is due to small estimated parameter variance, which is a measure
of the precision of the inverse solution regardless of the adequacy
of themodel. This is not the casewith the synthetic case study since
it has no data and model structure error. On the contrary, the
synthetic model has negligible fitting error, yet relatively high
variance due to nonuniqueness.

The study provides several practical hints about the computa-
tional cost of the CMA-ES for groundwater model calibration
and uncertainty quantification. First, the population size tuning
follows a specific pattern such that the search becomes more global
by increasing the population size as shown in the synthetic and the
real-world problems. Second, the parallel CMA-ES encourages
the development of realistic groundwater models due to the
significant alleviation of the computational cost. Increasing
the population size reduces the number of iterations to meet the
stopping criteria.

The study shows that the empirically estimated covariance
matrix can be used for Monte Carlo sampling to quantify
parameter-related uncertainty. After the covariance matrix is
estimated, only a small number of realizations are required for
the convergence of the mean head prediction and head prediction
variance.
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