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We present the ensemble method of prescreening-based subset selection to improve
ensemble predictions of Earth system models (ESMs). In the prescreening step, the
independent ensemble members are categorized based on their ability to reproduce
physically-interpretable features of interest that are regional and problem-specific. The
ensemble size is then updated by selecting the subsets that improve the performance of
the ensemble prediction using decision relevant metrics. We apply the method to improve the
prediction of red tide along the West Florida Shelf in the Gulf of Mexico, which affects coastal
water quality and has substantial environmental and socioeconomic impacts on the State of
Florida. Red tide is a common name for harmful algal blooms that occur worldwide, which
result from large concentrations of aquatic microorganisms, such as dinoflagellate Karenia
brevis, a toxic single celled protist. We present ensemble method for improving red tide
prediction using the high resolution ESMs of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) and reanalysis data. The study results highlight the importance of
prescreening-based subset selection with decision relevant metrics in identifying non-
representative models, understanding their impact on ensemble prediction, and improving
the ensemble prediction. These findings are pertinent to other regional environmental
management applications and climate services. Additionally, our analysis follows the FAIR
GuidingPrinciples for scientificdatamanagement and stewardship such that data and analysis
tools are findable, accessible, interoperable, and reusable. As such, the interactive Colab
notebooks developed for data analysis are annotated in the paper. This allows for efficient and
transparent testing of the results’ sensitivity to different modeling assumptions. Moreover, this
research serves as a starting point to build upon for red tide management, using the publicly
available CMIP, Coordinated Regional Downscaling Experiment (CORDEX), and
reanalysis data.
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INTRODUCTION

To improve raw outputs directly given by Earth system models
(ESMs) for providing useful services to societal decision
making, a combination of multiple methods is often used
such as bias-correction to account for systematic errors
(Szabó-Takács et al., 2019; Wang et al., 2019), ensemble
recalibration to improve ensemble characteristics (Manzanas
et al., 2019), downscaling to improve the spatial and temporal
resolution (Gutowski Jr. et al., 2016; Gutowski et al., 2020), and
ensemble methods to select and combine different models.
Ensemble methods are an active research area as multi-model
ensemble can be more robust then a single-model ensemble
(DelSole et al., 2014; Al Samouly et al., 2018; Wallach et al.,
2018). Single model ensemble is a single Earth system model
(ESM) with multiple realizations given perturbed parameters,
initialization, physics, and forcings. Multi-model ensemble
refers to an ensemble of multiple ESMs with single or
multiple realizations of each ESM. Ensemble methods aim
at selecting and combining multiple ESMs to form a robust and
diverse ensemble of models. Ensemble methods include model
weighting by assigning lower weights to less favorable models
(Knutti, 2010; Weigel et al., 2010), bagging by using subsets of
data or variables (Ahmed et al., 2019), subset-selection in
which the best performing independent models are selected
(Chandler, 2013; Herger et al., 2018; Ahmed et al., 2019; Hemri
et al., 2020), and the combination of these methods (e.g., using
subset selection prior to model weighting).

This study focuses on subset selection, which has not received
adequate attention in climate and Earth system research (DelSole
et al., 2013; Herger et al., 2018). In subset selection, a subset of
models, which have better performance in a set of models, are
selected as ensemble members. One model could perform better
than other models due to more accurate parameterizations,
higher spatial resolution, more tight calibration to relevant
data sets, inclusion of more physical components, more
accurate initialization, and imposition of more complete or
more accurate external forcings (Haughton et al., 2015). In
addition, one model could perform better than another model
for a specific application as we show in this study. Accordingly, a
question that often arises in multi-model combination is whether
the original set of models should be screened such that “poor”
models are excluded before model combination (DelSole et al.,
2013). One argument is that combining all “robust” and “poor”
models to form an ensemble (e.g., by assigning lower weights for
poorly performing models than others) is an intuitive solution
that has advantage over subset selection that uses the best
performing model (Haughton et al., 2015). One justification is
that, while the “poor” model can be useless by itself, it is useful
when combined with other models due to error cancellation
(Knutti et al., 2010; DelSole et al., 2013; Herger et al., 2018).
Another justification is that no small set of models can represent
the full range of possibilities for all variables, regions and seasons
(Parding et al., 2020). On the other hand, it has been argued that
the objective of subset selection is to create an ensemble of well-
chosen, robust and diverse models, and thus if the subset contains
a large enough number of the highest ranked and independent

models, then it will have the characteristics that reflect the full
ensemble (Evans et al., 2013).

Subset selection has several advantages and practical needs.
First, a thorough evaluation is generally required to remove
doubtful and potentially erroneous simulations (Sorland et al.,
2020), and to avoid the least realistic models for a given region
(McSweeney et al., 2015). Second, predictive performance can
generally improve from model diversity rather than from larger
ensemble (DelSole et al., 2014). A reason for this is that as more
models are included in an ensemble, the amount of new
information diminishes in proportion, which may lead to
overly confident climate predictions (Pennell and Reichler,
2011). Accordingly, several studies (Herger et al., 2018;
Ahmed et al., 2019; Hemri et al., 2020) developed evaluation
frameworks in which subset selection is performed prior to
model weighting. A third advantage of subset selection is to
identify models based on physical relationships highlighting the
importance of process-based model evaluation. For example,
Knutti et al. (2017) defined the metric of September Arctic sea
ice extent, showing that models that have more sea ice in 2100
than observed today and models that have almost no sea ice
today are not suitable for the projection of future sea ice. There
is no obvious reason to include these “poor model” that cannot
simulate the main process of interest. Likewise, for our case
study, we show that models that are unable to simulate the
looping of a regional warm ocean current in the Gulf of Mexico
(i.e., Loop Current) are unsuitable for our environmental
management objective (i.e., prediction of the harmful algal
blooms of red tide) as described later. Yun et al. (2017)
indicate that incorporating such process-based information is
important for highlighting key underlying mechanistic
processes of the individual models of the ensemble. Fourth,
subset selection allows for flexibility in terms of metrics and
thresholds to tailor the multi-model ensemble for the needs of
specific applications (Bartók et al., 2019). As noted by
Jagannathan et al. (2020), model selection studies are often
based on evaluations of broad physical climate metrics (e.g.,
temperature averages or extremes) at regional scales, without
additional examination of local-scale decision-relevant climatic
metrics, which can provide better insights on model credibility
and choice. For example, Bartók et al. (2019) and Bartók et al.
(2019) employ subset selection to tailor the ensemble for energy
sector needs, and local agricultural need in California,
respectively. Finally, another practical need for subset
selection is that, due to high computational cost, it is
common that only a small subset of models can be
considered for downscaling (Ahmed et al., 2019; Parding
et al., 2020; Sorland et al., 2020).

Although there is a need for an efficient and versatile method
that finds a subset which maintains certain key properties of the
ensemble, few work has been done in climate and Earth system
research (Herger et al., 2018). Without a well-defined guideline
on optimum subset selection (Herger et al., 2018; Ahmed et al.,
2019; Bartók et al., 2019; Parding et al., 2020), it is unclear how to
best utilize the information of multiple imperfect models with the
aim of optimizing the ensemble performance and reducing the
presence of duplicated information (Herger et al., 2018). It may
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be difficult to predict exactly how many models are necessary to
meet certain criteria, and subsets with good properties in one
region are not guaranteed to maintain the same properties in
other regions (Ross and Najjar, 2019). Typically, modelers make
their own somewhat subjective subset choices, and use equal
weighting for the models in the subset (Herger et al., 2018). A
commonly used approach is model ranking, typically based on
model performance to select the top models, which is generally
the top three to five models (Jiang et al., 2015; Xuan et al., 2017;
Hussain et al., 2018; Ahmed et al., 2019). For example, to derive
an overall rank for each model, Ahmed et al. (2019) use
comprehensive rating metric to combine information from
multiple goodness-of-fit measures for multiple climate
variables based on the ability to mimic the spatial or temporal
characteristics of observations. Then to form the multi-model
ensemble, Ahmed et al. (2019) select the four top-ranked models
to evaluate the two cases of equal weighting and a bagging
technique of random forest regression. A limitation of this
approach is the arbitrary choice of the number of the top
ranked model to include. For example, Ross and Najjar (2019)
evaluate six subset-selection methods with respect to
performance, and investigate the sensitivity of the results to
the number of model chosen. They show that selection
methods and models used should be carefully chosen. To aid
this common approach of subset selection, Parding et al. (2020)
present an interactive tool to compare subsets of CMIP5 and
CMIP6 models based on their representation of the present
climate, with user-determined weights indicating the
importance of different regions, seasons, climate variables, and
skill scores. This allows the users to understand the implications
of their different subjective weights and ensemble member
choices.

A less subjective approach for subset selection is to use a
method that is designed to address specific key properties of the
ensemble. In other words, a subset-selection method finds a
subset which maintains certain key properties of the ensemble.
Key properties include any combination of several criteria that
are performance, ensemble range, ensemble spread, capture of
extreme events, model independence, and decision relevant
metrics. First, the performance criterion reflects the model’s
skills in representing past and present climate and Earth
system states. Examples include subset-selection methods to
favor skilled models (Bartók et al., 2019), and to eliminate
models with poorest representation of the present system
states (Parding et al., 2020). A second criterion is the range of
projected climate and Earth system changes. For example,
McSweeney et al. (2015) developed a subset-selection method
that captures the maximum possible range of changes in surface
temperature and precipitation for three continental-scale regions.
Third, the model spread criterion ensures that the ensemble
contains representative models that conserve as much as
possible the original spread in climate sensitivity and climate
future scenarios with respect to variables of interest (Mendlik and
Gobiet, 2016; Bartók et al., 2019). Fourth, another subset selection
criterion, which is related to model spread, is the captures
extreme events (Cannon, 2015; Mendlik and Gobiet, 2016;
Farjad et al., 2019). Although some sectors are affected by

mean climate changes, the most acute impacts are related to
extreme events (Eyring et al., 2019). Fifth, model independence is
another important criterion, which can be accounted for using
diverse approaches. Sanderson et al. (2015) propose a stepwise
model elimination procedure that maximizes intermodel
distances to find a diverse and robust subset of models.
Similarly, Evans et al. (2013) and Herger et al. (2018) use an
indicator method with binary weights to find a small subset of
models that reproduces certain performance and independence
characteristics of the full ensemble. Binary weights are either zero
or one for models to be either discarded or retained, respectively.
Sixth, an additional criterion that is particularly important from
many climate services is to consider regional application and
decision-relevant metrics (Bartók et al., 2019; Jagannathan et al.,
2020). Since a primary goal of climate research is to identify how
climate affects society and to inform decision making, a
community generally needs rigorous regional-scale evaluation
for different impacted sectors that include agriculture, forestry,
water resources, infrastructure, energy production, land and
marine ecosystems, and human health (Eyring et al., 2019). By
considering this criterion, subset-selection is not based on general
model evaluation irrespective of the application (e.g., Sanderson
et al., 2017), but is rather based on regional model evaluation with
sector-specific information (Elliott et al., 2015). This includes, for
example, considering a combination of climate hazards at a
specific region (Zscheischler et al., 2018), and the use of
application-specific metrics as in this study.

This study complements an important aspect of subset
selection by explicitly considering application specific metrics
for subset selection based on a prescreening step. To find more
skillful and realistic models for a specific process or application,
we develop an indicator-based subset-selection method with a
prescreening step. In a prescreening step, models are scored based
on physical relationships and their ability to reproduce key
features of interest, highlighting the importance of process-
based and application specific evaluation of climate models.
Our method extends the indicator method based on binary
weights of Herger et al. (2018), by scoring each model based
on evolving binary weights, which are either zero or one for
models to be either discarded or selected, respectively, as
explained in the method section. Thus, irrespective of the
general predictive performance of the model for the variables
of interest (e.g., temperature, sea surface height, wind speed, and
precipitation), the model performance is evaluated based on
suitability to specific applications for a given problem
definition with key features of interest.

In this case study of red tide, models that cannot reproduce key
features of interest are the models that cannot simulate the
process of Loop Current penetration into the Gulf of Mexico,
for example, along with other key features as explained in the
method section. Red tide is a common name of harmful algae
blooms that occur in coastal regions worldwide due to high
concentrations of marine microorganisms such as
dinoflagellates, diatoms, and protozoans. Along the West
Florida Shelf in the Gulf of Mexico, red tide occurs by the
increase of the concentration of Karenia brevis, a toxic
mixotrophic dinoflagellate. This study focuses on Loop
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Current (LC), which is one of the main drivers of red tide in the
West Florida Shelf (Weisberg et al., 2014; Maze et al., 2015;
Perkins, 2019). LC is a warm ocean current that penetrates and
loops through the Gulf of Mexico until exiting the gulf to join the
Gulf Stream. Several relations have been established between red
tide and LC (Weisberg et al., 2014; Maze et al., 2015; Liu et al.,
2016; Weisberg et al., 2019). The relation discussed in Maze et al.
(2015) shows that the LC position, which can be inferred from sea
surface heigh, can be a definitive predictor of a large red tide
bloom possibility. Using CMIP6 and reanalysis data of sea surface
heigh as described in the method section, we show that this
prescreening-based subset-selection step can help reduce the
ensemble size without degrading the predictive performance.
We additionally illustrate the caveats of using non-
representative models given the notation of error cancellation,
showing that that a parsimonious ensemble can be more robust.

In the remainder of the manuscript, we present inMethods the
red tide case study including the CMIP6 data, reanalysis data, and
Karenia brevis data. Methods also presents the prescreening-
based subset selection method. Results presents the results,
which is following in Discussion by providing a discussion on
subset selection, challenges of seasonal prediction, and the study
limitations and outlook. Finally, we summarize our main
findings, and draw conclusions in Conclusion.

METHODS

FAIR Guiding Principles
To better support transparency and reproducibility of scientific
research, data and codes of scientific research should be part of
the scholarly work, and must be considered and treated as a first-
class research product (Horsburgh et al., 2020). We follow the
FAIR Guiding Principles for scientific data management and
stewardship (Wilkinson et al., 2016). Accordingly, the data and
codes that are used and developed for this study are Findable,
Accessible, Interoperable, and Reusable (FAIR). With respect to
the “findable” criterion, our data and codes for data analysis are
presented in Jupyter notebooks (Elshall, 2021) to provide rich
metadata about the used CMIP data, reanalysis data and Karenia
brevis data (Data). With respect to the “Accessible” criterion, the
notebooks are opensource and are available on GitHub (Elshall,
2021). Additionally, the notebooks are supported by Colab cloud
computing to make the codes immediately accessible and
reproducible by anyone with no software installation and
download to the local machine. With respect to the
“interoperable” criterion, which refers to the exchange and use
of information, the notebooks provide rich metadata with
additional analysis details not found in the manuscript. This
allows users to make use of the presented information by
rerunning the codes to reproduce the results, and to
understand the sensitivity of the results to different
assumptions and configurations as described in the
manuscript. Also, the codes can be used to visualize additional
data and results that are not shown in the manuscript as described
below. With respect to the “reusable” criterion, all the used data
are publicly available, and the codes have publicly data usage

license. This allows the users to build additional components to
the codes as discussed in the manuscript.

Data
The Karenia brevis cell count used in this study are from the
harmful algal bloom database of the Fish and Wildlife Research
Institute at the Florida Fish and the Wildlife Conservation
Commission (FWRI, 2020). In the study area (Figure 1) and
given the study period from 1993-01 to 2014-12, we identify
15 time intervals of large blooms, and 29 time intervals with no
bloom; each time interval is six-month long. FollowingMaze et al.
(2015), to identify a bloom/no-bloom event (zt), a large bloom is
defined as an event with the cell count exceeding 1×105 cells/L for
ten or more successive days without a gap of more than five
consecutive days, or 20% of the bloom length. Similar to Maze
et al. (2015) we define no bloom as the absence of large bloom.
The notebook “Karenia_brevis_data_processing” (Elshall, 2021)
provides the data processing details.

We use global reanalysis data, which combine observations
with shortrange weather forecast using weather forecasting
models to fill the gaps in the observational records. We use
the Copernicus Marine Environment Monitoring Service
(CMEMS) monthly gridded observation reanalysis product. Th
product identifier is Global_Reanalysis_PHY_001_030
(Drévillon et al., 2018; Fernandez and Lellouche, 2018), and
can be download from Mercator Ocean International as part
of the Copernicus Programme (https://resources.marine.
copernicus.eu/products). The used CMEMS reanalysis product
is a global ocean eddy-resolving reanalysis with approximatively
8 km horizontal resolution covering the altimetry from 1993
onward. Similar to CMIP6 data, we only focus on sea surface
height above geoid, which is the variable name zos according to
the Climate and Forecast Metadata Conventions (CF
Conventions).

We use 41 CMIP6 model runs from 14 different models
developed by eight institutes (Roberts et al., 2018, Roberts
et al., 2019; Cherchi et al., 2019; Golaz et al., 2019; Held et al.,
2019; Voldoire et al., 2019; Chang et al., 2020; Haarsma et al.,
2020). CMIP6 data can be download from any node (e.g., https://
esgf-data.dkrz.de/search/cmip6-dkrz) of the Earth System Grid
Federation (ESGF) of World Climate Research Programme
(WCRP). The study period is from 1993-01 to 2014-12. We
select CMIP6 model runs from the historical experiment (Eyring
et al., 2016) and the hist-1950 experiment (Haarsma et al., 2016),
which are sibling experiments that use historical forcing of recent
past until 2015. The historical simulation that starts from 1850
uses all-forcing simulation of the recent past (Eyring et al., 2016).
The hist-1950 experiment that starts from 1950 uses forced global
atmosphere-land simulations with daily 0.25° sea surface
temperature and sea-ice forcings, and aerosol optical
properties (Haarsma et al., 2016). For high-resolution models,
our selection criteria are to select all model runs with gridded
monthly “sea surface height above geoid,” which is the
variable name zos according to the Climate and Forecast
Metadata Conventions (CF Conventions), with nominal
resolution less than or equal to 25 km. For each model we
only consider variable zos. Given the available CMIP6 data
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until September 2020 when this study started, this resulted in 33
model runs. We mainly focus on high-resolution models with
eddy-rich ocean resolution, which is important for simulating
Loop Current. For our analysis purpose, we include two models
with standard resolution. One is EC-Earth3P with nominal ocean
resolution of about 100 km given in the hist-1950 experiment
with three model runs, and E3SM-1-0 with variable ocean
resolution of 30–60 km given in the historical experiment with
five model runs.

Model Independence
To account for model independence, we use institutional
democracy (Leduc et al., 2016), which can be regarded as a
first proxy to obtain an independent subset (Herger et al.,
2018), reflecting a priori definition of dependence. For the
same institution we created further subsets for different grids.
This is the case for the standard- and medium-resolution models
of EC-Earth-Consortium that use ORCA1 and ORCA025 grids,
respectively. It is also the case for the high-resolution and
medium-resolution model of MOHC-NERC that uses
ORCA12 and ORC025 grids, respectively. The ORCA family is
a series of global ocean configurations with tripolar grid of
various resolutions. Thus, the considered 14 models that are
listed aphetically by model name in Table 1, results in 11
independent model subsets.

For each independent model subset (IMS), multiple perturbed
runs of (parameter) realizations (r), initializations (i), physics (p),
and forcings (f) are considered. For example, IMS01 has only one
model run r1i1p1f1, and IMS11 has seven model runs, three with
perturbed initialization r1i (1-3)p1f1, and four with perturbed
parameter realizations r (1-4)i1p1f3 as shown in Table 1. Note
that this naming convention are relative given different modeling
groups. For example, the coupled E3SM-1-0 simulations (Golaz
et al., 2019) use five ensemble members that are r (1-5)i1p1f1
representing five model runs with different initialization. Each
ensemble member (i.e., independent model subset, IMS) in
Table 1 contains one or more models, and each model has

one or more model runs. These model runs of each ensemble
member should not simply be included in a multi-model
ensemble as they represent the same model, hence artificially
increasing the weight of models with more model runs. On the
other hand, using only one model run per ensemble member
discards the additional information provided by these different
runs (Brunner et al., 2019). Accordingly, the zos data of each
ensemble member is averaged in the way described in Loop
Current Position and Karenia brevis Blooms.

With the default model independence criteria of institutional
democracy and ocean grid we identify 11 ensemble members
listed in Table 1. The notebook “SubsetSelection” (Elshall, 2021)
and its interactive Colab version (https://colab.research.google.
com/github/aselshall/feart/blob/main/i/c2.ipynb) provide other
model independence criteria that can be investigated by the
users. For example, a second case is to use institutional
democracy criterion as the first criterion, ocean grid as a
second criterion and experiment as a third criterion, which
results in 13 ensemble members. In this case historical
experiment and hist-1950 experiment are assumed to be
independent. A third case is to assume all models are
independent, which results in 14 ensemble members. A fourth
case is to assume all models are independent, and use experiment
as a second criterion, which results in 16 ensemble members. A
fifth case is to assume that all members are independent, which
results is 41 ensemble members. The code additionally allows for
any user defined criteria. While the presented results in this paper
are all based on the default model independence criteria, the user
can instantly use the above link to investigate the sensitivity of the
prescreening and subset selection results and reproduce all figures
and under different model independence criteria.

Loop Current Position and Karenia brevis
Blooms
The mechanisms of initiation, growth, maintenance, and
termination of red tides have not been fully understood. Yet

FIGURE 1 |Observation reanalysis data of sea surface height above geoid (zos) [m] showing (A) LC-S and (B) LC-N. Two red segments along the 300 m isobath in
(A) are used to determine Loop Current position. The area where red tide blooms are considered by Maze et al. (2015) and this study is shown in the red box of (B).
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Loop Current, which is a warm ocean current that moves into
the Gulf of Mexico, is an important factor that controls the
occurrence of red tide (Weisberg et al., 2014; Maze et al., 2015;
Perkins, 2019). Maze et al. (2015) shows that the difference
between time intervals of large blooms and no blooms is
statistically significant for the Loop Current’s position.
Maze et al. (2015) also show that the Loop current in a
north position penetrating through the Gulf of Mexico is a
necessarily condition for a large Karenia brevis bloom to occur.
As such, when the Loop Current is in the south position shown
in Figure 1A, which is hereinafter denoted as Loop Current-

South (LC-S), then there is no large bloom (Maze et al., 2015).
When the Loop Current is in the north position shown in
Figure 1B, which hereinafter is denoted as Loop Current-
North (LC-N), then there could be either large blooms or no
blooms. This relationship between the loop current positions
and Karenia brevis is based on retention time. With
approximately 0.3 divisions per day, Karenia brevis is a
slow growing dinoflagellate that requires an area with
mixing slower than the growth rate to form a bloom
(Magaña and Villareal, 2006). As such, LC-N increases the
retention rate allowing bloom formation, if other conditions

TABLE 1 | Independent model subsets based on institutional democracy and using ocean grid as a secondary criterion when applicable.

Independent
model
subset
(IMS)

Institution Country Model
(reference)

Experiment
ID

Members Ocean
model

resolution

Ocean
model

Ocean
grid

ESM
nominal
resolution

(km)

IMS01 NCAR United States CESM1-CAM5-
SE-HR (Chang
et al., 2020)

hist-1950 r1i1p1f1 0.1° (11 km) nominal
resolution

POP2 POP2-HR 25

IMS02 CMCC Italy CMCC-CM2-HR4
(Cherchi et al.,
2019)

hist-1950 r1i1p1f1 0.25° from the
Equator degrading at
the poles

NEMO
v3.6

ORCA025 25

CMCC-CM2-
VHR4 (Cherchi
et al., 2019)

hist-1950 r1i1p1f1 0.25° from the
Equator degrading at
the poles

NEMO
v3.6

ORCA025 25

IMS03 CNRM-
CERFACS

France CNRM-CM6-1-
HR (Voldoire et al.
(2019))

hist-1950 r (1-3)
i1p1f2

0.25° (27–28 km)
nominal resolution

NEMO
v3.6

eORCA025 25

CNRM-CM6-1-
HR (Voldoire et al.,
2019)

Historical r1i1p1f2 0.25° (27–28 km)
nominal resolution

NEMO
v3.6

eORCA025 25

IMS04 DOE-E3SM-
Project

United States E3SM-1-0 (Golaz
et al., 2019)

Historical r (1-5)
i1p1f1

60 km in mid-
latitudes and 30 km at
the equator and poles

MPAS-
O

EC60to30 100

IMS05 EC-Earth-
Consortium

Europe EC-Earth3P
(Haarsma et al.,
2020)

hist-1950 r (1-3)
i1p2f1

about 1° (110 km) NEMO
v3.6

ORCA1 100

IMS06 EC-Earth-
Consortium

Europe EC-Earth3P-HR
(Haarsma et al.,
2020)

hist-1950 r (1-3)
i1p2f1

about 0.25°

(27–28 km)
NEMO
v3.6

ORCA025 25

IMS07 ECMWF Europe ECMWF-IFS-HR
(Roberts et al.,
2018)

hist-1950 r (1-6)
i1p1f1

25 km nominal
resolution

NEMO
v3.4

ORCA025 25

IMS08 ECMWF-IFS-MR
(Roberts et al.,
2018)

hist-1950 r (1-3)
i1p1f1

25 km nominal
resolution

NEMO
v3.4

ORCA025 25

IMS09 NOAA-GFDL United States GFDL-CM4 (Held
et al., 2019)

Historical r1i1p1f1 0.25° (27–28 km)
nominal resolution

MOM6 tri-polar
grid

50

GFDL-ESM4 (Held
et al., 2019)

Historical r (2-3)
i1p1f1

0.25° (27–28 km)
nominal resolution

MOM6 tri-polar
grid

50

IMS10 NERC United Kingdom HadGEM3-GC31-
HH (Roberts et al.,
2019)

hist-1950 r1i1p1f1 8 km nominal
resolution

NEMO
v3.6

ORCA12 10

MOHC-
NERC

United Kingdom HadGEM3-GC31-
HM (Roberts et al.,
2019)

hist-1950 r1i (1-3)
p1f1

25 km nominal
resolution

NEMO
v3.6

ORCA12 50

IMS11 MOHC United Kingdom HadGEM3-GC31-
MM (Roberts et al.,
2019)

hist-1950 r1i (1-3)
p1f1

25 km nominal
resolution

NEMO
v3.6

ORCA025 100

HadGEM3-GC31-
MM (Roberts et al.,
2019)

Historical r (1-4)
i1p1f3

25 km nominal
resolution

NEMO
v3.6

ORCA025 25
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are ideal (Maze et al., 2015). While there are several studies
that establish different relationships between Loop Current
and Karenia brevis (Weisberg et al., 2014; Maze et al., 2015; Liu
et al., 2016; Weisberg et al., 2019), the aim of this study is not to
support or refute any of these relationships, but to use the
study of Maze et al. (2015) for the purpose of our subset
selection analysis.

The LC and its eddies can be detected from sea surface height
variability. When the difference between the average sea surface
height of the north and south segments along the 300 m isobath
(Figure 1A) is positive and negative, this is a good proxy for
identify LC-N and LC-S, respectively (Maze et al., 2015). The zos
data processing steps to determine the Loop Current positions
(i.e., LC-N and LC-S) are as follows:

1) The zos data is preprocessed for the north and south segments
(Figure 1A) for all model runs and observation analysis data.
Model runs and observation reanalysis data are sampled using
nearest neighborhood method along the line points
(approximately spaced at 1 km interval between two
neighboring points) of the north and south segments
(Figure 1A). The nearest neighborhood sampling is
performed using the python package of xarray project
(http://xarray.pydata.org) that handles NetCDF (Network
Common Data Form) data formats with file extension NC
that is used typically for climate data (e.g., CMIP and
reanalysis data). This has an additional practice advantage
of reducing the size of the ESMs and reanalysis data. For
example, in this case preprocessing CMIP6 and CMEMS data
reduced that data size from more than 80 GB to about 11 MB
interactive cloud computing feasible. Given data
preprocessing, we have a zos datum h(j,k,l,m,n,t) for a model
run with index j, an ensemble member with index k, a spatial
point along the segment with index l, a segment (i.e., the north
or south segment in Figure 1A) with index m, a model and
reanalysis datasets temporal interval (i.e., 1 month) with index
n, and a prediction interval with index t.

2) The expectation of zos data is taken for all model runs
j ∈ [1, J] of each ensemble member Mk

hk,l,m,n,t � Ej(hj,k,l,m,n,t

∣∣∣∣Mk) (1)

The size J of each ensemble member varies depending on the
number of model runs in the ensemble member, with the
minimum J � 1 for ensemble member IMS01 and the
maximum J � 7 for ensemble member IMS11 (Table 1).

(3) The zos data is averaged for all ensemble members k ∈ [1, K]
hl,m,n,t � Ek(Ej(hj,k,l,m,n,t

∣∣∣∣Mk)) (2)

where k is the index of each ensemblememberMk. The sizeK of the
multi-model ensemble varies based on subset selection (Prescreening),
which determines the inclusion and exclusion of ensemble members.
For example, using all available ensemble members without any
subset selection results in K � 11 that is all the independent model
subsets inTable 1. If we evaluate k for only one ensemblemember for
prescreening purpose (Prescreening), then K � 1.

4) For each of the north and south segments the expected zos is
calculated for each segment

hm,n,t � El[Ek(Ej(hj,k,l,m,n,t

∣∣∣∣Mk))] (3)

5) The zos data of the north segment is subtracted from the south
segment

hn,t � Δm[El[Ek(Ej(hj,k,l,m,n,t

∣∣∣∣Mk))]] (4)

resulting in zos difference data hn,t with n ∈ [1, N] and
t ∈ [1, T]. As such, N represents the interval length such that
N � 3 for a season interval, andN � 6 for a semiannual interval,
and T represents the number of intervals. For example, givenN �
6 as considered in this study and the 22-year study period,
then T � 44.

6) The maximum hn,t in the 6-month interval is selected to
obtain the zos anomaly per time interval

ht � max
hn

(Δm[El[Ek(Ej(hj,k,l,m,n,t

∣∣∣∣Mk))]]) (5)

For each zos anomaly datum ht, positive and negative values
are used as an indicator of LC-N dominated interval and LC-S
dominated interval, respectively. Selecting the maximum value
max
hn

(.) is more robust than using the average value, which may

dilute the signals since the Loop Current position is a cycling
event, recalling that loop current has a random and chaotic cycle
with the average period of 8–18 months per cycle (Sturges and
Evans, 1983; Maze et al., 2015).

The objective of this analysis is not to model the LC cycle, but
rather to use the relationship between Loop Current position and
Karenia brevis bloom of Maze et al. (2015) to obtain a heuristic
coarse-temporal-resolution relation between Loop Current
position and Karenia brevis. Thus, the ht values given by Eq.
5 can be expressed as an indicator function for LC-N:

HLC−N(ht) � { 1, ht ≥ 0
0, ht < 0

(6)

and LC-S:

HLC−S(ht) � { 1, ht < 0
0, ht ≥ 0

(7)

such that HLC−N(ht) � 1 and HLC−S(ht) � 1 indicate a LC-N
interval and LC-S interval, respectively. Eqs 6 and 7 are
convenient to use since we are not interested in the value of
zos anomaly between the north and south segments per se, but
rather in sign difference. Finally, Eqs 5–7 are valid for both model
simulation and observation reanalysis data, which hereinafter are
donated as ht and ht,obs, respectively.

Model Performance Metrics
A model performance is based on its ability to reproduce the
observed phenomena. We define three qualitative metrics to
prescreen for physical relationships, and four quantitative
metrics of the model performance. Based on this prescreening
we can do subset selection. For prescreening, a process-based
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FIGURE 2 | Snapshots of sea surface height above geoid (zos) [m] from 1993-02 to 1993-06 simulated using (A–E) a high-resolution ESM, and (F–J) standard-
resolution ESM with nominal resolution of 10 and 100 km, respectively.
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metric is needed, for example, to understand if the model can
simulate certain mechanistic aspects of the problem of interest.
For example, Christensen et al. (2010) use metrics that capture
aspects of model performance in reproducing large-scale
circulation patterns and meso-scale signals. A qualitative
metric reflects if the model is suitable or unsuitable for
reproducing key features of the problem. In our case study,
models that cannot reproduce key features of interest would
be the models that cannot 1) simulate the penetration of LC into
the Gulf of Mexico, 2) represent the alternation of LC in the
North and South positions given the empirical method (Eqs 5–7),
3) reproduce the higher frequency of Loop Current in the
northern and southern positions as described below. For
example, with respect to (1), the Loop Current penetrates the
Gulf of Mexico extending its northward reach with eddy shedding
as shown by the high-resolution model EC-Earth3P-HR (Figures
2A–C). As such, intrusion of cooler water increases the
stratification of the core of the Loop Current, and the Loop
Current becomes unstable forming anticyclonic eddy that breaks
from the parent Loop Current westward without reconnecting
(Caldwell et al., 2019), as shown by the high-resolution model
EC-Earth3P-HR (Figures 2D,E). On the other hand, the
standard-resolution model EC-Earth3P (Figures 2F–J) cannot
reproduce the observed physical phenomena, and thus unsuitable
for this application. Models that are unable to simulate LC-N are
unsuitable for this environmental management purpose.
Justifications about selecting these three qualitative metrics
and details about them are given below. Finally, for a further
illustration of the models that are capable and incapable of
reproducing the Loop Current, Elshall (2020) shows an
animation of a Loop Current cycle of year 2010 given monthly
zos data for all the 41 model runs in Table 1 shown side-by-side
with the reanalysis data. In addition, the reader can visualize the
reanalysis data in Figure 1 and the CMIP6 data in Figure 2 for
any month in the study period 1993–2015 using the Jupyter
notebook “DataVisualization_zos” (Elshall, 2021), and its
interactive Colab version (https://colab.research.google.com/
github/aselshall/feart/blob/main/i/c1.ipynb).

The binary qualitative metrics (y1-y3) used for prescreening
are as follows:

Physical phenomena simulation (y1): Accurate simulation of
Loop Current positions is generally a challenging task, yet the
objective of this first metric is to determine if the model can
simulate LC-N irrespective of the accuracy. Thus, the model
receives a score one y1 � 1 if it can simulate LC-N (e.g., Figures
2A–E), and zero y1 � 0 otherwise (e.g., Figures 2F–J), i.e.,

y1 �
⎧⎪⎨⎪⎩ 1, ∑T

t�1HLC−N(ht)> 0

0, ∑T

t�1HLC−N(ht) � 0
(8)

such that∑T
t�1HLC−N(ht) is the count on LC-N intervals given the

total number of intervals T � 44 as explained before.
Oscillating event representation (y2): This metric is specific to

the method of Maze et al. (2015) for determining LC-N and LC-S.
If the sea surface height is consistently higher at the north
segment than at the south segment, then the model is unable
to represent alternation of LC-N and LC-S according to the proxy

method of Maze et al. (2015). In this case, the model receives a
score zero y2 � 0, and one y2 � 1 otherwise, i.e.,

y2 �
⎧⎪⎨⎪⎩ 1, 0<∑T

t�1HLC−N(ht)<T
0, ∑T

t�1HLC−N(ht) � T
(9)

Oscillating event realism (y3): If the frequency of LC-N is
greater than that of LC-S for a model, the model receives the score
of one y3 � 1 and zero y3 � 0 otherwise, i.e.,

y3 �
⎧⎪⎨⎪⎩ 1, ∑T

t�1HLC−N(ht)≥∑T

t�1HLC−S(ht)
0, ∑T

t�1HLC−N(ht)<∑T

t�1HLC−S(ht)
(10)

It is more realistic that the frequency of LC-N is greater than
that of LC-S. In the study ofMaze et al. (2015), the ratio of the LC-
S intervals∑T

t�1HLC−N(ht) to the total number of intervals T � 60
is 0.267, given their altimetry data product with study period of
15 years and 3-month interval (i.e.,N � 3). In this study the ratio
of LC-S to total number of intervals is 0.273, given our reanalysis
product with T � 44 and N � 6 as previously explained.

We define four quantitative metrics (y4-y7) to evaluate the
predictive performance, and the scoring rules (y8) to evaluate
complexity. These performance criteria are as follows.

Oscillating event frequency (y4): This is the ratio of the number
of a LC position (LC-S or LC-N) to the total number of intervals.
Hereinafter, we refer to the oscillating event frequency as the
number of LC-S to the total number of intervals T,

y4 � ∑T
t�1HLC−S(ht)

T
(11)

which can be compared to reanalysis data that is 0.273 as
presented in the results section. Additionally, we define the
oscillating event frequency error as

y4,err �
∣∣∣∣∑T

t�1HLC−S(ht) −∑T
t�1HLC−S(ht,obs)∣∣∣∣

T
(12)

which is the absolute difference of LC-S counts of ensemble
prediction ht and reanalysis data ht,obs.

Temporal match error (y5): This is a temporal match of model
predictions and reanalysis data with respect to LC position for
LC-N

y5,LC−N � ∑T
t�1HLC−N(ht,obs) − ∑T

t�1(ht,obs ≥ 0＾ht ≥ 0)∑T
t�1HLC−N(ht,obs) (13)

for LC-S

y5,LC−S � ∑T
t�1HLC−S(ht,obs) −∑T

t�1(ht,obs < 0＾ht < 0)∑T
t�1HLC−S(ht,obs) (14)

and both positions

y5 � T −∑T
t�1(ht,obs ≥ 0＾ht ≥ 0) −∑T

t�1(ht,obs < 0＾ht < 0)
T

(15)

such that ∑T
t�1HLC−N(ht,obs) and ∑T

t�1HLC−S(ht,obs) are the counts
of the LC-N and LC-S intervals, respectively, given the observation
reanalysis data ht,obs; the terms ∑T

t�1(ht,obs ≥ 0＾ht ≥ 0) and
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∑T
t�1(ht,obs < 0＾ht < 0) are the temporal match counts of model

simulation and reanalysis data for LC-N and LC-S, respectively. The
logical conjunction ∧ gives a value of one when the statement
(ht,obs ≥ 0＾ht ≥ 0) is true if ht,obs ≥ 0 and ht ≥ 0 are both true,
otherwise gives a value of zero if false. Temporal match is the
most challenging task. While ESMs are well established on climate
timescale, the temporal match at seasonal timescale can be
challenging (Hewitt et al., 2017). Generally speaking, the hist-
1950 and historical experiments are free-running, and accordingly
are neither designed nor expected to have temporal coincide with
real-world conditions, which is especially true for the historical
experiment. However, one aim of this study is to investigate if
any temporal match is possible given the used heuristic relation for
determining Loop Current position with a coarse temporal
resolution of 6-month interval.

Karenia brevis error (y6): A false negative prediction of
Karenia brevis bloom occurs when large bloom coincides with
LC-S. For the study period, we define the Karenia brevis error as
the ratio of the number of LC-S with large bloom to the number of
large-bloom Nbloom

y6 � ∑T
t�1(ht < 0＾H(zt) � 1)

Nbloom
(16)

where H(zt) is an indicator function with one and zero for large
bloom and no bloom, respectively.

Root-mean-square error (y7): It is the root-mean-square error
(RMSE) between model simulation and reanalysis data

y7 �
��������������∑T

t�1(ht − ht,obs)2
T

√
(17)

The defined metrics (y1- y7) are specifically designed to judge
the predictive performance of these ESMs with respect to the
targets of a specific application, and are not meant to judge the
predictive skill of these ESMs globally or regionally for general
purposes. Judging the predictive skills of these models with
respect to global or regional simulations of sea surface height
above geoid (variable: zos) or any other variable, is beyond the
scope of this work.

Prescreening
Evaluation of specific regional applications is another important
criterion, which is the focus of this manuscript. We develop a
subset-selection method that extends the binary method of
Herger et al. (2018) based on a prescreening step as shown in
Figure 3. Model independence is accounted for as described in
FAIR Guiding Principles, and a score is obtained for each
ensemble member using three binary qualitative metrics y1-
y3 (Model Independence). Binary refers to a score of either
zero or one if the ensemble member is unable or able to
produce the metric target. The three binary metrics (Eqs

FIGURE 3 | The prescreening method.
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8–10) are evolving such that if the ensemble member fails the first
metric, then it will consequently fail in the other two, and will
accordingly receive a score of zero. For example, given score (y1,
y2, y3), the model receives a score from zero to three for score
(0,0,0), (1,0,0), (1,1,0), and (1,1,1), respectively. In other words, if
a model score is one for y3 (Eq. 10) it will by default score ones for
y1 (Eq.11) and y2 (Eq.9).

Subset Selection
The subset selection step is shown in Figure 4. In this step we
compose five multi-model ensembles using simple-average multi-
model ensemble (SME). Each SME is composed of ensemble
members based on prescreening score. The notation SME3210
means that members with prescreening score from zero to three
are included in the ensemble. The notation SM321X means that
members with prescreening score from one to three are included
in the ensemble and members with prescreening score of zero are
excluded, and so on. Ensemble SME321X, SME32XX, and
SME3XXX exclude ensemble members based on the three
binary qualitative metrics (y1- y3), respectively. These are
evolving metrics such that if an ensemble member scores zero
in y1, it will score zero in y2 and y3, and have an overall score of
zero. If a model has a score y3 � 1, it will by default score one in
y1 and y2, and have an overall score of three. As such, SME3210
contains all ensemble members with scores from zero to three,
which is all the 11 ensemble members listed in Table1. On the
other hand, SME3XXX contains the best ensemble members,
which are the ones with a score of three. Ensemble SME32XX
contains ensemble members with scores of three and two, and so
on. On the other hand, ensemble SMEXXX0 contains only the
least performing ensemble members with a score of zero. More

discussion on the model scores is given in the next section. We
evaluate the predictive performance of these five multi-model
ensembles using the quantitative metrics (y4-y7). The evaluation
of these five multi-model ensembles serves multiple purposes as
described in the results section.

RESULTS

Prescreening
We plot the oscillation of the Loop Current position for each
ensemble member (Figure 5), following the zos data processing
steps described in Loop Current Position and Karenia brevis
Blooms. This is to conduct qualitative comparison between the
reanalysis data (Figure 5A) and the prediction of each ensemble
member (Figures 5B–L). Accordingly, we score the ensemble
member given its performance with respect to three binary
evolving metrics (y1-y3). The score is zero if the ensemble
member fails to pass all the three metrics. This is the case for
E3SM-1-0 of DOE-E3SM-Project (Figure 5E) and the EC-
Earth3P of EC-Earth-Consortium (Figure 5F). As these two
ensemble members do not pass the first metric of physical
phenomena simulation (y1) that is the simulation of the LC-
N, then accordingly they score zero in the next two metrics of
oscillating event representation (y2) and oscillating event realism
(y3). This is not unexpected as these two ensemble members are
standard-resolution ESMs, which do not have improved process
description as the high-resolution ESMs do. The standard-
resolution grids EC60to30 of E3SM-1-0 and ORCA1 of EC-
Earth3P do not explicitly resolve the mesoscale eddies and
boundary currents, but rather require global parametrization

FIGURE 4 | The subset-selection method.
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of mesoscale eddies. For example, EC60to30 is an eddy closure
(EC) grid with global parameterization that is not designed to
resolve regional spatial phenomena. On the other hand, with a
high horizontal resolution, the eddy-permitting grids such as
eORCA12, ORCA12, eORCA025, and ORCA025 (Table 1) can
resolve mesoscale eddies, and do not require ocean eddy flux
parameterization. For comparison of high- and standard-
resolution grid see also Figure 2. On the other hand, the
model runs of CESM1-CAM5-SE-HR of NCAR (Figure 5B)
and CNRM-CM6-1-HR of CNRM-CERFACS (Figure 5D) can
simulate LC-N, but without a sign difference of zos at the two
segments (Figure 1A), and accordingly fail in the second metric

of oscillating event representation (y2). These two ensemble
members receive a score of one. This score does not indicate
that the sea surface height simulation of these models is poor in
general, but rather that these models are unsuitable for this target
given the problem definition. The ensemble members of CMCC-
CM2-(V)HR4 of CMCC (Figure 5C), EC-Earth3P-HR of EC-
Earth-Consortium (Figure 5G), and GFDL-CM4/ESM4 of
NOAA-GFDL (Figure 5J), pass the second metric, but fail on
the oscillating event realism (y3). These ensemble members show
a higher LC-S frequency than LC-N, which is not consistent with
the reanalysis data (Figure 5A). Accordingly, these three
ensemble members receive a score of two. Finally, the

FIGURE 5 | The surface height above geoid (zos) anomaly (Eq. 5) of (A) reanalysis data, and (B–L) enesmble members (i.e, independent model subsets). The title of
the reanalysis data shows the data provider name, and product ID. The title of ensemble member shows ensemble member number, modeling group name, model
name(s), and ensmble member score.
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ensemble members that pass the three evolving binary metrics
and receive a score of three are ECMWF-IFS-HR of ECMWF
(Figure 5H), ECMWF-IFS-MR of ECMWF (Figure 5I),
HadGEM3-GC31-HH/HM of MOHC-NERC (Figure 5K), and
HadGEM3-GC31-MM of MOHC-NERC (Figure 5L). Visual
inspection shows that these four ensemble members are
qualitatively similar to the reanalysis data (Figure 5A) with
respect to Loop Current position oscillation.

Using metrics y4–y7, we evaluate the predictive performance
of these 11 ensemble members with respect to reanalysis data as
shown in Table 2. According to Maze et al. (2015) there are no
red tide blooms for LC-S, and there are either large blooms or no
blooms for LC-N. The results of our reanalysis data shown in
Table 2 are consistent with Maze et al. (2015) such that none of
the 12 intervals of LC-S has large blooms for the study period. Out
of the 32 intervals of LC-N, 15 intervals have large blooms. This
indicates that LC-N is a necessarily condition for the large bloom
to occur and be sustained. Given the reanalysis data, the LC-S
frequency is 0.273 for our 22-year study period, which is
comparable to Maze et al. (2015), which is 0.267 for their 15-
year study period. The ensemble members IMS07, IMS10, IMS11,
and IMS08 have the best agreement with the reanalysis data
showing LC-S frequencies (y4) of 0.295, 0.318, 0.205, and 0.182,
respectively. These correspond to the oscillating event frequency
errors (y4,err) of 0.022, 0.045, −0.068, and −0.091, respectively.
Ensemble members that can simulate the oscillation of LC-N and
LC-S and have the best temporal match are IMS08, IMS07,
IMS10, and IMS11 with temporal match error (y5) of 27, 34,
34, and 41%, respectively. Given the high-resolution model runs,
IMS08, IMS07, IMS10, and IMS11 have the lowest Karenia brevis
error (y6) of 0.1, 0.3, 0.3, and 0.3, respectively. IMS09, IMS08,
IMS10, IMS03 have the lowest RMSE (y7) of 3.77, 3.87, 3.88, and
4.02, respectively. While no ensemble member is consistently
ranked as the top ensemble member given the four metrics,
IMS08 is ranked twice as the top ensemble member given the
two metrics y5 and y6. Thus, this analysis shows that there is no
single ensemble member that consistently perform better with
respect to all metrics, and that different ensemble members show
both over and underestimation of zos anomaly. These two

remarks indicate the importance of using a multi-model
ensemble.

Subset Selection
There is generally no specific guideline on the composition of
multi-model ensemble of ESMs. While composing information
from multiple imperfect ensemble members can be an
arbitrarily task, the prescreening step can help find subsets
that maintain key features of the problem of interest. We
first discuss the two ensembles of SME3210 and SME321X.
The ensemble SME3210, which includes both high- and
standard-resolution model runs, is generally a flawed
ensemble composition, since we know from prior existing
knowledge of other studies (Caldwell et al., 2019; Hoch et al.,
2020) that standard-resolution ESMs are generally incapable of
simulating Loop Current. On the other hand, SME321X is the
most straightforward ensemble composition that acknowledges
prior information, and includes all high-resolution runs that are
capable of simulating Loop Current. We consider SME321X as
our reference ensemble. Figure 6 shows the predictive
performance of the four multi-model ensembles. Large red
tide blooms do not occur for LC-S given reanalysis data
(Figure 6A). Comparing reanalysis data (Figure 6A) and the
multi-model ensembles (Figures 6B–E) shows that ensembles
based on prior information (i.e., SME321X, SME32XX, and
SME3XXX) correspond better to reanalysis data than without
accounting for prior information (i.e., SME3210).

Visual examination in Figure 6 is insufficient to understand
the impact of prescreening information (i.e., SME32XX and
SME3XXX) in comparison to the reference ensemble
SME321X without prescreening information, and qualitative
metrics are needed. Table 3 quantitatively shows that
including standard-resolution model runs (i.e., SME3210)
results in prediction degradation with respect to the four
qualitative metrics (y4-y7). As can be calculated from raw
data in Table 3, SME321X shows relatively good agreement
with the reanalysis data with a LC-S frequency (y4) of 0.227,
temporal match error (y5) of 36%, Karenia brevis bloom error
(y6) of 20%, and RMSE (y7) of 3.71.

TABLE 2 |Raw data of Loop Current at North (LC-N) and South (LC-S) positions, and their relation to the occurrence of large blooms for reanalysis data, and each ensemble
member (i.e., independent model subset, IMS). The ensemble size is the number of model runs per ensemble member, and the reanalysis data has only one realization.
Note given Score (y1, y2, y3) the model receives a score from 0 to 3 for Score (0, 0, 0), Score (1,0,0), Score (1, 1, 0), and Score (1, 1, 1), respectively.

IMS Ensemble Count Count LC-N Count LC-S Temporal match RMSE Score

Size LC-N LC-S No-Bloom Large-Bloom No-Bloom Large-Bloom LC-N LC-S Total

Reanalysis data 1 32 12 17 15 12 0 32 12 44 0 3
IMS01 1 44 0 29 15 0 0 32 0 32 13.16 1
IMS02 2 20 24 14 6 15 9 15 7 22 5.48 2
IMS03 4 44 0 29 15 0 0 32 0 32 4.02 1
IMS04 5 0 44 0 0 29 15 0 12 12 9.27 0
IMS05 3 0 44 0 0 29 15 0 12 12 20.16 0
IMS06 3 20 24 13 7 16 8 13 5 18 4.34 2
IMS07 6 31 13 21 10 8 5 24 5 29 3.77 3
IMS08 3 36 8 22 14 7 1 28 4 32 3.87 3
IMS09 3 8 36 6 2 23 13 5 9 14 5.06 2
IMS10 4 35 9 24 11 5 4 26 3 29 3.88 3
IMS11 7 30 14 20 10 9 5 22 4 26 4.08 3
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Another approach for ensemble composition is to use
information from the prescreening step. These are ensembles
SME32XX and SME3XXX that exclude the models that cannot
represent the oscillation of LC-N and LC-S (y2). Ensemble
SME3XXX only includes model runs with realistic
presentation of LC-N and LC-S (y3). SME32XX shows
degraded predictions with respect to the reference ensemble

SME321X for all the four quantitative metrics (y4-y7). This is
not unexpected since members of SME321X show both under
and overestimation. For simple model average of model runs with
over and underestimation the errors are expected to cancel out
(Herger et al., 2018). However, this is not the case for SME3XXX
that leverages on most information gained from the prescreening
step (i.e., by only including the best members that meet the targets

FIGURE 6 | Temporal match of large bloom/no bloomwith Loop Current positions given the surface height above geoid (zos) anomaly (Eq. 5) of (A) reanalysis data,
and (B–E) simulations of four multi-model ensembles. Positive and negative bars indicate Loop Current North (LC-N) and Loop Current South (LC-S), respectively.
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of interest). SME3XXX shows mixed predictive performance with
respect to the reference ensemble showing better performance
with respect to temporal match error (y5) of 25% (versus 36% for
the reference ensemble), Karenia brevis error (y6) of 13% (versus
20% for the reference ensemble), and RMSE (y7) of 3.68 (versus
3.71 for the reference ensemble), but inferior performance with
respect to LC-S frequency (y4) of 0.205 (versus 0.273 and 0.227
for the reanalysis data and reference ensemble, respectively). Yet
temporal coverage error is not important for future predictions as
discussed in Discussion. The relatively good performance of
SME3XXX is expected, because this ensemble ensures that
members with good performance are only included.

Table 3 additionally shows the case of SMEXXX0, which only
considers standard-resolution runs. SMEXXX0 shows a poor
predictive performance with respect to all metrics. We present
the SMEXXX0 ensemble to illustrate the breakthrough of the
HighResMIP of CMIP6. With respect to sea surface height
simulation and regional phenomena, our results clearly show
the significant improvement of the high-resolution runs of
CMIP6 in comparison to the standard-resolution models that
are typical to CMIP5.

Ensemble Composition
Our results show that using prior information is important for
ensemble composition, and prescreening- based subset selection
can be helpful. Figure 7 summarizes the effect of different

ensemble composition criteria. Prior information appears as an
important criterion that should be considered as SME3210 has the
worst predictive performance with respect to the other ensembles
given y4–y7. Prescreening-based subset selection seems to relatively
improve the predictive performance given y5–y7, and slightly
degraded performance with respect to y4. However, pre-
screening-based subsect selection has a second conceptual
advantage. Given prior information, the first approach of using all
the available ensemble members (i.e., SME321X) is a straightforward
choice that can result in error cancellation. The second approach of
using information from prescreening results in a reduced size
ensemble (i.e., SME3XXX), which maintains the most important
ensemble characteristics with respect to the problem of interest.
While in the first approach we attempt to maintain a more
conservative ensemble, with the second approach we create an
ensemble with robust ensemble members. Our results suggest that
pre-screening based subset section used to substitute or prior to
model weighting, which is a subject of a future research.

DISCUSSION

Subset Selection
To find a robust ensemble that improves the predictive
performance of ESMs, this article shows the importance of
subset selection based on prior information, prescreening, and

TABLE 3 | Raw data of Loop Current at North (LC-N) and South (LC-S) positions, and their relation to the occurrence of large blooms simple-average multi-model ensemble
(SME). The ensemble size refers to the number of model runs per multi-model ensemble.

SME Ensemble
size

Count Count LC-N Count LC-S Temporal match RMSE

LC-N LC-S No-Bloom Large-Bloom No-Bloom Large-Bloom LC-N LC-S Total

Reanalysis
data

1 32 12 17 15 12 0 32 12 44 0

SME3210 41 3 41 2 1 27 14 2 11 13 5.13
SME321X 33 34 10 22 12 7 3 25 3 28 3.71
SME32XX 28 23 21 17 6 12 9 17 6 23 3.92
SME3XXX 20 35 9 22 13 7 2 28 5 33 3.68
SMEXXX0 8 0 44 0 0 29 15 0 12 12 13.52

FIGURE 7 | Predictive performance (y4–y7) given different ensemble composition criteria.
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process-based evaluation. By evaluating the prescreening-based
subset-selection method we deduce two key points as follows.
First, we present additional advantages to subset selection that are
not well recognized in the literature, which is the importance of
subset selection based on process-based evaluation similar to Yun
et al. (2017). Eliminating models from an ensemble can be
justified if they are known to lack key mechanisms that are
indispensable for meaningful climate projections (Weigel et al.,
2010). As shown in this study, models that cannot simulate the
processes of interest based on a prescreening step can be excluded
from the ensemble without degrading the ensemble prediction.
Second, the selection of subset-selection method depends on the
criteria that are relevant for the application in question (Herger
et al., 2018). For example, the process-based evolving binary
weights developed in this study is particularly important to
eliminate non-representative models. Unlike other subset-
selection methods in literature that can be technically
challenging to implement, we present a subset-selection
method that can be frequently used, as it is intuitive and
straightforward to apply. This approach is an addition to
subset-selection literature, and is not meant to supersede any
of the existing approaches in the literature.

Seasonal Prediction Limitations
Improving seasonal prediction of ESMs to provide useful services for
societal decision making is an active research area. Techniques to
improve temporal correspondence between predictions and
observations at the regional scale is needed for climate services in
many sectors such as energy, water resources, agriculture, and health
(Manzanas et al., 2019). In this study we used raw outputs without
using a postprocessingmethod to improve temporal correspondence
of seasonal prediction. Our results show that the temporal
correspondence is not poor, which could be just coincident.
Alternatively, this could be attributed to the chosen Loop Current
position heuristic with a coarse-temporal-resolution. Accordingly,
given a long 6-month period, this is not a month-by-month or
season-by-season temporal match, but rather a pseudo-temporal
correspondence that captures the general pattern of a dynamic
process. Accordingly, using this heuristic relationship, a form of
temporal relationship might be possible as long as there is no large
drift. If such a temporal correspondence cannot be established for
ESMs for Loop Current or other factors that drives the red tide, this
would limit the use of the ESMs in terms of providing an early
warning system. However, this will not affect the main purpose of
the intended model, which is to understand the frequency and trend
of red tide under different climate scenarios and estimating the
socioeconomic impacts accordingly. If temporal correspondence is
required, seasonal prediction of ESMs has generally been possible
through statistical and dynamical downscaling methods, and other
similar techniques such as pattern scaling and use of analogue (van
den Hurk et al., 2018). Alternatives to more complex statistical
downscaling techniques to improve temporal correspondence
include bias correction (Rozante et al., 2014; Oh and Suh, 2017;
Wang et al., 2019), ensemble recalibration (Sansom et al., 2016;
Manzanas et al., 2019), and postprocessing techniques such as
copula-based postprocessing (Li et al., 2020). For example, to
improve temporal correspondence of seasonal prediction,

Manzanas (2020) use bias correction and recalibration methods
to remove mean prediction bias, and intraseasonal biases from drift
(i.e., lead-time dependent bias).

Limitations and Outlook
In this study we present the advantages of subset selection using
Loop Current prediction as an example. We show these advantages
for the simplest case of using a deterministic analysis, and by
considering only historical data. For red tide management
purpose, which is to understand the frequency of red tide and
the corresponding socioeconomic impacts under different climate
scenarios, further steps are needed. First, using CMIP6 model
projection data is important to understand the frequency and
future trends of red tide under different Shared Socioeconomic
Pathways (SSPs) of CMIP6 in which socio-economic scenarios are
used to derive emission scenarios without mitigation (i.e., baseline
scenario) and with mitigation (i.e., climate polices). Additionally,
CMIP6 data can be readily replaced by high resolution data of
Coordinated Regional Downscaling Experiment (CORDEX) as soon
as they become available. CORDEX which is driven by the CMIP
outputs, provides dynamically downscaled climate change
experiments for selected regions (Gutowski Jr. et al., 2016;
Gutowski et al., 2020). Second, we need to extend our method to
a probabilistic framework that considers both historical and future
simulations. As historical assessment criteria are not necessarily
informative in terms of the quality of model projections of future
climate change, identifying the performance metrics that are most
relevant to climate projections is one of the biggest challenges in
ESM evaluation (Eyring et al., 2019). As the choice of model is a
tradeoff between good performance in the past and projected climate
change, selecting only the best performing models may limit the
spread of projected climate change (Parding et al., 2020). Exploring
such trade-off is warranted in a future study in which a probabilistic
framework (e.g., Brunner et al., 2019) is needed to account for model
performance, model independence, and the representation of future
climate projections. Third, it is imperative to consider not only Loop
Current, but also other factors that control red tide such as
alongshore and offshore wind speed, African Sahara dust, and
atmospheric CO2 concentration need to be considered. To
account for these different factors simultaneously to predict red
tide, machine learning is needed similar to the study of Tonelli et al.
(2021) that uses CMIP6 data and machine learning to study marine
microbial communities under different climate scenarios. In
summary, there are still many further steps needed to develop a
probabilistic machine learning framework for regional
environmental management of red tide using ESMs of CMIP6
and CORDEX when available. This study is merely a showcase
for the potential of using ESMs for red tide management.

CONCLUSION

To improve ensemble performance and to avoid prediction artifacts
from including non-representative models, which are models that
cannot simulate the process(es) of interest, we introduce a
prescreening based subset-selection method. Including non-
representative models with both over and underestimation can

Frontiers in Earth Science | www.frontiersin.org January 2022 | Volume 10 | Article 78622316

Elshall et al. Prescreening-Based Subset Selection

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


result in error cancellation.Whether to include or exclude these non-
representative models from the ensemble is a point that requires
further investigation through studyingmodel projection.We present
a generic subset-selection method to exclude non-representative
models based on process-based evolving binary weights. This
prescreening step screens each model with respect to its ability to
reproduce certain key features. This research emphasizes the
importance of ensemble prescreening, which is a topic that is
rarely discussed. The presented subset-selection method is flexible
as it scores each model givenmultiple binary criteria. This allows the
user to systematically evaluate the sensitivity of the results to
different choices of ensemble members. Such flexibility is
generally needed to allow the user to understand the implication
of ensemble subset selection under different cases (e.g., historic
versus historic and future simulations, etc.). Our prescreening-
based subset selection method is not meant to replace any of the
existing approaches in the literature, but to provide a straightforward
and easy-to-implement approach that can be used for many climate
services in different sectors as needed.
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