1D Transport Equation with Analytical Solution

Initial Condition

$$
C(x, y, z, t)=C_{0}(x, y, z, t)
$$

-When we do flow modeling, we always run the flow system as steady state, and use the resulting head as the initial condition.
-Can we do this for transport modeling?

Initial Condition

- For some simulation, we can use the initial condition of $C(x, y, z, t)=0$, if the concentration is zero initially, e.g., for a landfill leaching problem.
- In practice, it is always difficult to know the initial condition.
- Many methods have been developed to either estimate initial condition or correct the error in initial condition during model run (e.g., data assimilation approaches).

What are the physical explanations for

 the BCs below?

ADE

$$
\begin{aligned}
& \frac{\partial c}{\partial t}=-\mathbf{v} \cdot \nabla c+\nabla \cdot(\mathbf{D} \nabla c) \\
& \text { 3D mass transport of conservative solute } \\
& \qquad \frac{\partial C}{\partial t}=-v_{x} \frac{\partial C}{\partial x}+D_{L} \frac{\partial^{2} C}{\partial x^{2}} \\
& D_{L}=\alpha_{L} v_{x}+D^{*}
\end{aligned}
$$

1D Mass transport in a homogenous isotopic medium such that the average linear velocity v_{x} is uniform in space and D_{x} does not vary in space

$$
\frac{\partial C}{\partial t}=-v_{x} \frac{\partial C}{\partial x}+D_{L} \frac{\partial^{2} C}{\partial x^{2}}+D_{T} \frac{\partial^{2} C}{\partial y^{2}}
$$

2D flow with direction of flow parallel to x-axis

Analytical Solutions of ADE

1D step change in concentration (First-type BC)

$$
\left.\begin{array}{llc}
\frac{\partial C}{\partial t}=-v_{x} \frac{\partial C}{\partial x}+D_{L} \frac{\partial^{2} C}{\partial x^{2}} & \begin{array}{l}
C(x, 0)=0
\end{array} & x \geq 0 \\
C(0, t)=C_{0} & t \geq 0 \\
C(\infty, 0)=0 & t \geq 0
\end{array}\right\} \text { Initial condition } \quad \text { Boundary conditions }
$$

Fig. 1. Natural conditions for uniform flow in a one-dimensional semi-infinite domain. [Sauty, 1980]

Analytical Solutions of ADE

1D step change in concentration (First-type BC)

$$
\begin{gathered}
\left.\frac{\partial C}{\partial t}=-v_{x} \frac{\partial C}{\partial x}+D_{L} \frac{\partial^{2} C}{\partial x^{2}} \quad \begin{array}{l}
C(x, 0)=0 \\
C(0, t)=C_{0}
\end{array} \quad \begin{array}{c}
x \geq 0 \\
C(\infty, 0)=0
\end{array} \quad \begin{array}{l}
t \geq 0
\end{array}\right\} \text { Initial condition } \\
C=\frac{C_{0}}{2}\left[\operatorname{erfc}\left(\frac{L-v_{x} t}{2 \sqrt{D_{L} t}}\right)+\exp \left(\frac{v_{x} L}{D_{L}}\right) \operatorname{erfc}\left(\frac{L+v_{x} t}{2 \sqrt{D_{L} t}}\right)\right] \\
C_{R}\left(t_{R}, P_{e}\right)=\frac{1}{2}\left\{\operatorname{erfc}\left[\left(\frac{P_{e}}{4 t_{R}}\right)^{1 / 2}\left(1-t_{R}\right)\right]+\exp \left(P_{e}\right) \operatorname{erfc}\left[\left(\frac{P_{e}}{4 t_{R}}\right)^{1 / 2}\left(1+t_{R}\right)\right]\right\} \\
P_{e}=v_{x} L / D_{L} \quad C_{R}=C / C_{0} \quad t_{R}=v_{x} t / L \quad \text { [Ogata and Banks, 1961] }
\end{gathered}
$$

Peclet number when flow distance L is chose as the reference length

Analytical Solutions of ADE

1D continuous injection into a flow field (Second-Type BC)

$$
\left.\frac{\partial C}{\partial t}=-v_{x} \frac{\partial C}{\partial x}+D_{L} \frac{\partial^{2} C}{\partial x^{2}} \begin{array}{l}
C(x, 0)=0 \quad-\infty<x<+\infty \\
\int_{-\infty}^{+\infty} n_{e} C(x, t) d x=C_{0} n_{e} v_{x} t \quad t>0 \\
C(\infty, t)=0 \quad t \geq 0
\end{array}\right\} \text { Boundary conditions }
$$

Fig. 2. Continuous injection into an aquifer from (a) a system of wells or (b) a surface canal.
[Sauty, 1980]

Analytical Solutions of ADE

1D continuous injection into a flow field (Second-Type BC)

$$
\begin{gathered}
\left.\frac{\partial C}{\partial t}=-v_{x} \frac{\partial C}{\partial x}+D_{L} \frac{\partial^{2} C}{\partial x^{2}} \begin{array}{l}
C(x, 0)=0 \quad \begin{array}{l}
-\infty<x<+\infty \\
\int_{-\infty}^{+\infty} n_{e} C(x, t) d x=C_{0} n_{e} v_{x} t \quad \\
C(\infty, t)=0
\end{array} \quad t \geq 0
\end{array}\right\} \text { Initial condition } \\
C=\frac{C_{0}}{2}\left[\operatorname{erfc}\left(\frac{L-v_{x} t}{2 \sqrt{D_{L} t}}\right)-\exp \left(\frac{v_{x} L}{D_{L}}\right) \operatorname{erfc}\left(\frac{L+v_{x} t}{2 \sqrt{D_{L} t}}\right)\right] \\
C_{R}\left(t_{R}, P_{e}\right)=\frac{1}{2}\left\{\operatorname{erfc}\left[\left(\frac{P_{e}}{4 t_{R}}\right)^{1 / 2}\left(1-t_{R}\right)\right]-\exp \left(P_{e}\right) \operatorname{erfc}\left[\left(\frac{P_{e}}{4 t_{R}}\right)^{1 / 2}\left(1+t_{R}\right)\right]\right\} \\
P_{e}=v_{x} L / D_{L} \quad C_{R}=C / C_{0} \quad t_{R}=v_{x} t / L \quad \text { [Sauty, 1980] }
\end{gathered}
$$

Peclet number when flow distance L is chosen as the reference length

Analytical Solutions of ADE

Fig. 3. Type curves for continuous tracer injection in a monodimensional uniform flow field.

Class Exercise I

The Happy Pickle Factor makes pickles in large wooden vats. One of the vats has been leaking brine directly into the water table. The concentration of chloride in the brine is $1575 \mathrm{mgL}-1$. The flow in the aquifer that receives the brine is essentially 1D with the following characteristics

Hydraulic conductivity $=2.93 \times 10-4 \mathrm{~m} / \mathrm{s}$
Hydraulic gradient $=0.00678$
Effective porosity=0.259
Estimated chloride diffusion coefficient $=2 \times 10-9 \mathrm{~m} 2 / \mathrm{s}$
Calculate the concentration of chloride above any background value at a distance 125 m from the leaking vat 0.5 years after the leak began.
Notes
(1) You can use this equation $\alpha_{L}=0.83(\log L)^{2414}$ to estimate the longitudinal dispersivity.
(2) To evaluate the complementary error function use (i) tables (from internet, book, etc.), (ii) MATLAB or Excel $\operatorname{erfc}()$), (iii) $\operatorname{erfc}(B)=1-\operatorname{erf}(B)$ such that $\operatorname{erf}(B)=\sqrt{1-\exp \left(-4 B^{2} / \pi\right)}$ or (iv) your calculator.

$$
C=\frac{C_{0}}{2}\left[\operatorname{erfc}\left(\frac{L-v_{x} t}{2 \sqrt{D_{L} t}}\right)-\exp \left(\frac{v_{x} L}{D_{L}}\right) \operatorname{erfc}\left(\frac{L+v_{x} t}{2 \sqrt{D_{L} t}}\right)\right]
$$

Class Exercise 1

(1) Calculate v_{x}

$$
v_{x}=\frac{K}{n_{e}} \frac{d h}{d l} \quad v_{x}=7.67 \times 10^{-6} \mathrm{~m} / \mathrm{s}
$$

(2) Estimate the hydrodynamic dispersion coefficient

$$
\begin{gathered}
D_{L}=\alpha_{L} v_{x}+D^{*} \quad \alpha_{L}=0.83(\log L)^{2414} \quad \alpha_{L}=4.96 \mathrm{~m} \\
D_{L}=3.8 \times 10^{-5}+2 \times 10^{-9}=3.8 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}
\end{gathered}
$$

(3) Express time in seconds

$$
0.5 \times 365 \times 24 \times 3600=1.578 \times 10^{7} s
$$

(4) Substitute into the analytical solution

$$
\begin{aligned}
C & =\frac{C_{0}}{2}\left[\operatorname{erfc}\left(\frac{L-v_{x} t}{2 \sqrt{D_{L} t}}\right)-\exp \left(\frac{v_{x} L}{D_{L}}\right) \operatorname{erfc}\left(\frac{L+v_{x} t}{2 \sqrt{D_{L} t}}\right)\right] & C & =\frac{C_{0}}{2}\left[\operatorname{erfc}\left(\frac{L-v_{x} t}{2 \sqrt{D_{L} t}}\right)\right] \\
C & =\frac{1575}{2}[\operatorname{erfc}(0.0816)-\exp (25.23) \operatorname{erfc}(5.02)] & C & =\frac{1575}{2}[\operatorname{erfc}(0.0816)] \\
& =\frac{1575}{2}[0.908-0.109]=628.934 \mathrm{mg} / L & & =\frac{1575}{2}[0.908]=715 \mathrm{mg} / L
\end{aligned}
$$

Analytical Solutions of ADE

1D slug injection into the flow field

$$
\begin{gathered}
\frac{\partial C}{\partial t}=-v_{x} \frac{\partial C}{\partial x}+D_{L} \frac{\partial^{2} C}{\partial x^{2}} \quad \begin{array}{l}
C(x, 0)=M / A_{e} \cdot \delta(x) \\
\delta(x) \text { Dirac function: } \delta(x)=\lim _{m \rightarrow 0} \delta m(x) \\
\delta m(x)=1 / m \quad x \in(0, m) \\
\delta m(x)=0 \quad x>m
\end{array} \\
C(\pm \infty, t)=0 \quad t \geq 0
\end{gathered}
$$

Class Exercise 2

- For 1D slug injection into the flow field

What will happen to (i) peak concentration $\mathrm{C}_{\text {max }}$ and (ii) break through curve when we
(1) increase the Peclet number? (Try $\mathrm{Pe}=1,10$ and 100)
(2) use a non-conservative tracer? (Try R=1.1)

$$
\begin{aligned}
& C_{R}\left(t_{R}, P_{e}\right)=\frac{E}{\sqrt{t_{R}}} \exp \left[-\frac{P_{e}}{4 t_{R}}\left(1-t_{R}\right)^{2}\right] \\
& \quad E=\sqrt{t_{R \text { max }}} \exp \left[\frac{P_{e}}{4 t_{R \max }}\left(1-t_{R} \max \right)^{2}\right] \quad t_{R \max }=\sqrt{1+P_{e}^{-2}}-P_{e}^{-1} \\
& P_{e}=v_{x} L / D_{L} \quad C_{R}=C / C_{\text {max }} \quad t_{R}=v_{x} t / L
\end{aligned}
$$

Class Exercise 2

- For 1D slug injection into the flow field

What will happen to (i) peak concentration $\mathrm{C}_{\text {max }}$ and (ii) break through curve when we
(1) increase the Peclet number? (Try $\mathrm{Pe}=1,10$ and 100)
(2) use a non-conservative tracer? (Try R=1.1)

Fig. 4. Type curves for slug injection compared with the derivative of the fixed step function solution.

Analytical Solutions of ADE

2D slug injection into a uniform 2D flow field
Tracer with concentration C_{0} is 2 D flow field over area A at point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ the concentration at a point (x, y) at time t after the injection is

$$
C(x, y, t)=\frac{C_{0} A}{4 \pi t \sqrt{D_{L} D_{T}}} \exp \left[-\frac{\left(\left(x-x_{0}\right)-v_{x} t\right)^{2}}{4 D_{L} t}-\frac{\left(y-y_{0}\right)^{2}}{4 D_{T} t}\right]
$$

[Fetter, 1993]
The maximum concentration of contaminant is found at the center of the plume (center of mass)

$$
C_{\max }=\frac{C_{0} A}{4 \pi t \sqrt{D_{L} D_{T}}}
$$

and the distribution of the plume follow a normal distribution such that

$$
\sigma_{x}=\sqrt{2 D_{L} t} \quad \sigma_{y}=\sqrt{2 D_{T}} t
$$

By definition 99.7% of the mass will be contained within the 3σ area away from the center of mass of the plume. Thus the plume can be defined by the location of the center of mass, $3 \sigma_{x}$ and $3 \sigma_{y}$

Class Exercise 3

A truck carrying a dilute brine with $2130 \mathrm{mg} / \mathrm{L}$ chloride (from a cleanup of a pond containing waste from a producing oil well) overturns and spills the dilute brine over area of 455 square feet. The underlying thin aquifer has an average linear groundwater velocity of $1.23 \mathrm{ft} / \mathrm{day}$.

- Where would the center of mass of the plume be in 133 day?
- What would be the maximum concentration?
- How far beyond and to the side of the center of mass would the plume spread?

$$
\begin{aligned}
C_{\max } & =\frac{C_{0} A}{4 \pi t \sqrt{D_{L} D_{T}}} \quad \sigma_{x}=\sqrt{2 D_{L}} t \quad \sigma_{y}=\sqrt{2 D_{T}} t \\
\alpha_{L} & =0.83(\log L)^{2.414} \\
D_{L} & =\alpha_{L} v_{x}+D^{*}
\end{aligned}
$$

Class Exercise 3

(1) The plume will be advected by the flowing groundwater so the center of the mass would be at:

$$
x=v_{x} t \quad x=1.23 \mathrm{ft} / \mathrm{d} \times 133 \mathrm{~d}=164 \mathrm{ft}
$$

(2) The maximum contraction of the center of mass

$$
\alpha_{L}=0.83(\log L)^{2.414}=5.66 f t \quad D_{L}=\alpha_{L} v_{x}=6.96 \mathrm{ft}^{2} / d
$$

and we can assume D_{T} to be 10% of D_{L}

$$
D_{T}=0.696 \mathrm{ft}^{2} / d
$$

and then substitute to get the maximum concentration

$$
C_{\max }=\frac{C_{0} A}{4 \pi t \sqrt{D_{L} D_{T}}}=\frac{2130 \mathrm{mg} / L \times 455 f t^{2}}{4 \pi \times 133 d \sqrt{6.96 f t^{2} / d \times 0.696 f t^{2} / d}}=263 \mathrm{mg} / \mathrm{L}
$$

(3) The size of the plume can be determined from the standard deviations

$$
\sigma_{x}=\sqrt{2 D_{L}} t=43 \mathrm{ft} \quad \sigma_{y}=\sqrt{2 D_{L}} t=13.6 \mathrm{ft}
$$

The leading edge is $3 \sigma_{x}$ feet ahead of the center of mass (129 feet) and the plume has spread out $3 \sigma_{y}$ feet on either side of the center of mass (40.8 feet)

