
1D Transport Equation with 
Analytical Solution



Initial Condition

C(x,y,z,t)=C0(x,y,z,t)

•When we do flow modeling, we always run 
the flow system as steady state, and use the 
resulting head as the initial condition.

•Can we do this for transport modeling?



Initial Condition

• For some simulation, we can use the initial 
condition of C(x,y,z,t)=0, if the 
concentration is zero initially, e.g., for a 
landfill leaching problem.

• In practice, it is always difficult to know the 
initial condition.

• Many methods have been developed to 
either estimate initial condition or correct 
the error in initial condition during model 
run (e.g., data assimilation approaches). 



What are the physical explanations for 
the BCs below?
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3D mass transport of conservative solute

1D Mass transport in a homogenous isotopic medium such 
that the average linear velocity vx is uniform in space and 
Dx does not vary in space  

2D flow with direction of flow parallel to x-axis
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Analytical Solutions of ADE
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1D step change in concentration (First-type BC)

[Sauty, 1980]
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Peclet number when flow distance L is chose as the reference length 

1D step change in concentration (First-type BC)

[Ogata and Banks, 1961]
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1D continuous injection into a flow field (Second-Type BC)

[Sauty, 1980]
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Analytical Solutions of ADE

R xt v t Le x LP v L D
0/RC C C

Approximate solution 

[Sauty, 1980]
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Class Exercise I 
The Happy Pickle Factor makes pickles in large wooden vats.  One of the 
vats has been leaking brine directly into the water table. The concentration 
of chloride in the brine is 1575 mgL-1. The flow in the aquifer that receives 
the brine is essentially 1D with the following characteristics

Hydraulic conductivity = 2.93x10-4 m/s 
Hydraulic gradient = 0.00678
Effective porosity=0.259
Estimated chloride diffusion coefficient = 2x10-9 m2/s

Calculate the concentration of chloride above any background value at a 
distance 125 m from the leaking vat 0.5 years after the leak began. 
Notes
(1) You can use this equation                                   to estimate the 
longitudinal dispersivity.
(2) To evaluate the complementary error function use (i) tables (from 
internet, book, etc.), (ii) MATLAB or Excel erfc(), (iii)                          such 
that                                     or (iv) your calculator. 
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Class Exercise 1 

(1) Calculate vx

(2) Estimate the hydrodynamic dispersion coefficient 

(3) Express time in seconds

(4) Substitute into the analytical solution
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Analytical Solutions of ADE
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1D slug injection into the flow field 

[Sauty, 1980]
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Class Exercise 2
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For 1D slug injection into the flow field 
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What will happen to (i) peak concentration Cmax and  (ii) break 
through curve when we

(1) increase the Peclet number? (Try Pe=1,10 and 100) 
(2) use a non-conservative tracer?  (Try R=1.1)



Class Exercise 2

. For 1D slug injection into the flow field 

What will happen to (i) peak concentration Cmax and  (ii) break 
through curve when we

(1) increase the Peclet number? (Try Pe=1,10 and 100) 
(2) use a non-conservative tracer?  (Try R=1.1)

R xt v t L

max/RC C C

e x LP v L D



Analytical Solutions of ADE
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2D slug injection into a uniform 2D flow field 

[Fetter, 1993]

Tracer with concentration C0 is 2D flow field over area A at point 
(x0,y0) the concentration at a point (x,y) at time t after the injection is 

The maximum concentration of contaminant is found at the center of 
the plume (center of mass)

and the distribution of the plume follow a normal distribution such that

By definition 99.7% of the mass will be contained within the 3 area 
away from the center of mass of the plume. Thus the plume can be 
defined by the location of the center of mass, 3x and 3y
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Class Exercise 3

. A truck carrying a dilute brine with 2130 mg/L chloride (from a cleanup 
of a pond containing waste from a producing oil well) overturns and 
spills the dilute brine over area of 455 square feet. The underlying thin 
aquifer has an average linear groundwater velocity of 1.23 ft/day.
– Where would the center of mass of the plume be in 133 day? 
– What would be the maximum concentration? 
– How far beyond and to the side of the center of mass would the 

plume spread? 
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Class Exercise 3

. (1) The plume will be advected by the flowing groundwater so the 
center of the mass would be at:

(2) The maximum contraction of the center of mass

and we can assume DT to be 10% of DL

and then substitute to get the maximum concentration 

(3) The size of the plume can be determined from the standard 
deviations  

The leading edge is 3x feet ahead of the center of mass (129 feet) 
and the plume has spread out 3y feet on either side of the center of 
mass (40.8 feet)
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