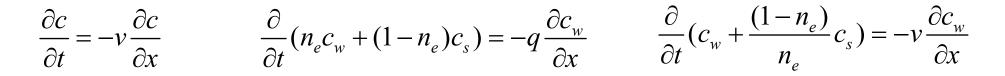

Sorption



Exercise 1: Breakthrough Curve

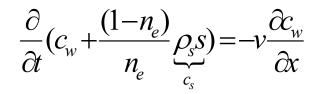
A Sorbing Phase

The mass fluxes are not affected by sorption, but the solute can also be stored in the solid phase. The volumetric water content is the effective porosity n_e and the volumetric content of solids is $(1-n_e)$. The new mass balance with a solid sorbing phase:

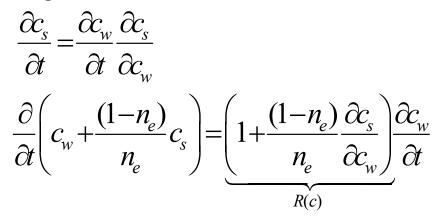
$$m = [n_e c_w + (1 - n_e) c_s] A \Delta x$$

One thing to note is that Sorbing compounds are often quantified as mass fraction s $[M_{solute}/M_{solid}]$ in the solid. $\rho_s [M_{soild}/L^3]$ is the density of the solids.

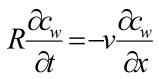
$$c_s = \rho_s s$$


$$\frac{\partial}{\partial t}(c_w + \frac{(1 - n_e)}{n_e}\rho_s s) = -v\frac{\partial c_w}{\partial x}$$

A Sorbing Phase: Equilibrium


Only when we assume that sorption is at equilibrium at any point within the domain, the relationship between the two concentrations is unique with functional relationship $f(c_w(x))$ known as sorption isotherm

$$s(x) = f(c_w(x))$$


Advective transport equation

Using chain-rule

Advective transport with a sorbing phase

How to define the sorption isotherm for the retardation factor R ?

It depends whether you have

- Linear sorption
- Non-linear sorption

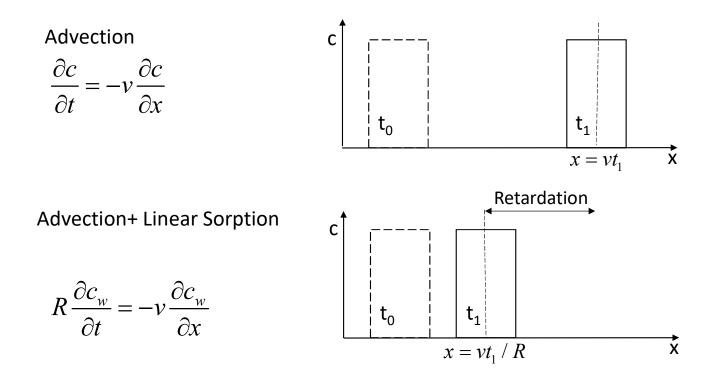
Retardation Factor: Linear Equilibrium Sorption

$$\frac{\partial}{\partial t} \left(c_w + \frac{(1 - n_e)}{n_e} c_s \right) = \left(1 + \frac{(1 - n_e)}{n_e} \frac{\partial c_s}{\partial c_w} \right) \frac{\partial c_w}{\partial t} \qquad c_s = \rho_s s$$

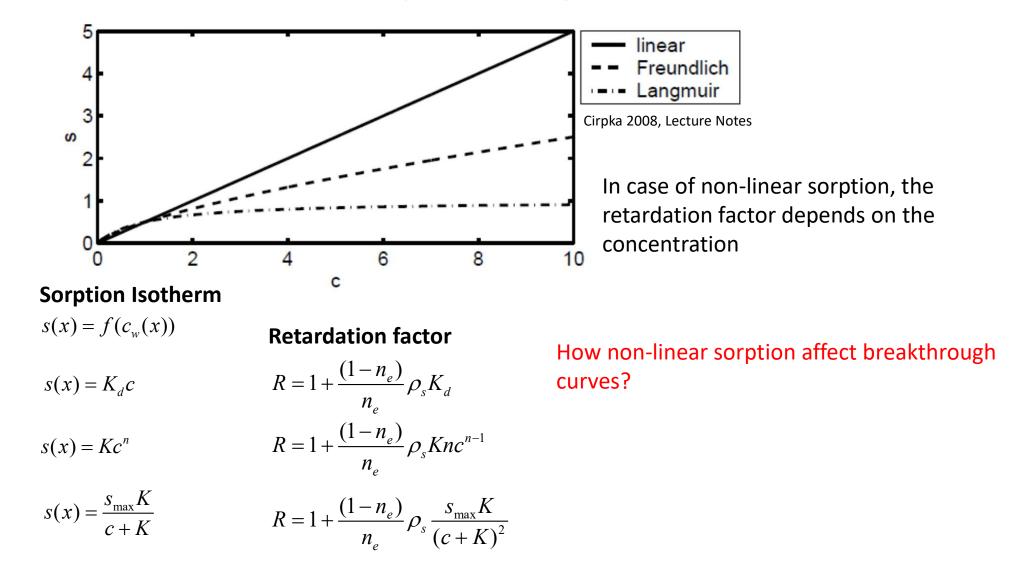
$$s(x) = f(c_w(x))$$

$$s = K_d c_w$$

 $K_d [L^3/M_{solid}]$ is partitioning coefficient between the solid and the aqueous phase.

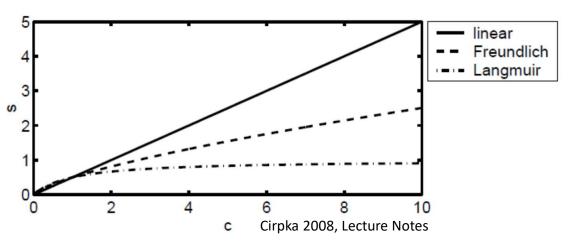

What is the retardation factor for linear equilibrium sorption?

$$R = 1 + \frac{(1 - n_e)}{n_e} \rho_s K_d$$


 $K_d = K_{oc} f_{oc}$

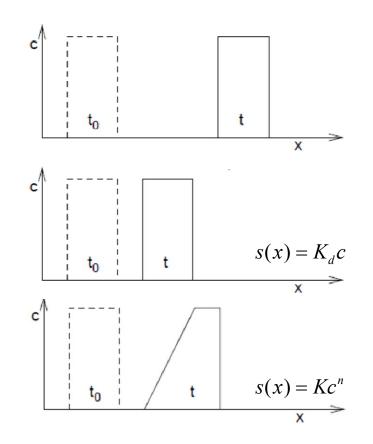
 K_{OC} [L³/M_{Corg}] partitioning coefficient between organic carbon and water f_{OC} [-] fraction of organic carbon.

Retardation Factor: Linear Equilibrium Sorption



For linear sorption at equilibrium: the non-retarded and retarded concentration profiles are identical. The only difference is that everything happens at later time.

Retardation Factor: Non-Linear Equilibrium Sorption


How Non-Linear Sorption Affect Breakthrough Curve?

How non-linear sorption affect breakthrough curves?

- Concentration changes are slowed down more dramatically at lower concentrations than at higher concentrations.
- This leads to a deformation of the concentration profiles with sharp front and stronger retardation at smaller concentrations.

Non-linear sorption: the retardation factor depends on the concentration

Exercise 2: Retardation Factor

Can the retardation become factor R <1?

Name	Sorption Isotherm	Retardation Factor
Linear	$s(c) = K_d c$	$R = 1 + \frac{(1 - n_e)}{n_e} \rho_s K_d$
Freundlich	$s(c) = Kc^n$	$R = 1 + \frac{(1 - n_e)}{n_e} \rho_s Knc^{n-1}$
Langmuir	$s = \frac{s_{\max}K}{c+K}$	$R = 1 + \frac{(1 - n_e)}{n_e} \rho_s \frac{s_{\max} K}{(c + K)^2}$

Note that for Langmuir sorption isotherm: S_{max} [M_{solute}/M_{solid}] is the sorption site density generally reported in mol/kg, and K [M/L³] is the half-saturation concentration at which the sorbed concentration *s* equals exactly 50% of its maximum value.

A retardation factor R < 1, implies K<0, which is not physically possible.