Main Transport Processes

Groundwater Transport

Former Spill Active Spill
Former Spill

Main Transport Processes

Before we proceed what are: (1) seepage velocity $v[L / T]$, (2) dispersion coefficient $\mathbf{D}\left[L^{2} / T\right]$ and (3)
(3) Specific reaction rate $r\left[M / L^{3} T\right]$ of chemical transformations, (4) retardation factor $R[-]$?

Seepage velocity [L/T]

Seepage velocity $v_{p}[L / T]$: Velocity experienced by a water particle along its true trajectory.

Darcy velocity (Specific discharge) q [L/T]:
Groundwater discharge per unit cross-
section area $q=d Q / d A$

Average linear velocity
Hornberger et al 1998

Seepage velocity $v[\mathrm{~L} / \mathrm{T}]$: Length of a streamline section divided by the time needed to distance $v=\Delta \mathrm{s} / \Delta \mathrm{t} \approx \mathrm{q} / \mathrm{n}_{\mathrm{e}}$

True velocities Hornberger et al 1998

Effective porosity [-]

What is the effective porosity n_{e} ?
It is volume of void space in which groundwater flows

$$
n=\frac{V_{P}}{V_{P}+V_{S}} \quad n_{e}=\frac{V_{E}}{V_{P}+V_{S}}
$$

Unconsolidated Sediments	$\mathbf{n}[\%]$	$\mathbf{n}_{\mathrm{e}}[\%]$
Silt	$40-50$	$0.5-5$
fine sand	$40-50$	$10-15$
Coarse sand and well sorted fine gravel	$30-40$	$20-25$
Sandy gravel	$20-30$	$15-20$

Dispersion Coefficient D [L²/T]

Cirpka 2008, Lecture Notes

Mechanisms contributing to dispersion in porous media

Dispersion Coefficient D [L²/T]

$D_{l}=\alpha_{l} v+D_{e} \quad D_{t}=\alpha_{t} v+D_{e}$
D_{1} and D_{t} are the longitudinal and transverse dispersion coefficient. α [L] is the dispersivity. The term αv is referred to hydrodynamic dispersion. D_{e} is the effective molecular diffusion coefficient.

The dispersion coefficient tensor D can for any arbitrarily oriented \boldsymbol{v}

$$
\mathbf{D}=\frac{\mathbf{v} \mathbf{v}^{T}}{\|\mathbf{v}\|}\left(\alpha_{l}-\alpha_{t}\right)+\mathbf{I}\left(D_{e}+\alpha_{t}\|\mathbf{v}\|\right)
$$

Specific Reaction Rate r [M/L $\left.{ }^{3} \mathrm{~T}\right]$ of Chemical Transformations

Reactions leading to the chemical transformation of the compounds:
(1) Equilibrium Reactions: in which the concentrations (activities) of the products and educts (original compounds) are in a fixed ratio. The equilibrium can be calculated from thermodynamic properties of the compounds involved. The mathematical description of equilibrium reactions is by (systems of algebraic equations.

In the mathematical description of reactive solute transport, the transformation rates r [$\left.\mathrm{M} / \mathrm{L}^{3} \mathrm{~T}\right]$ appear as source and sink terms of the involved compounds.

$$
R \frac{\partial c}{\partial t}=-v \frac{\partial c}{\partial x}+D \frac{\partial^{2} c}{\partial x^{2}}+r_{w}+\frac{\left(1-n_{e}\right)}{n_{e}} r_{s}
$$

Specific Reaction Rate r [M/LT$\left.{ }^{3}\right]$ of Chemical Transformations

Reactions leading to the chemical transformation of the compounds:
(1) Equilibrium Reactions: in which the concentrations (activities) of the products and educts (original compounds) are in a fixed ratio. The equilibrium can be calculated from thermodynamic properties of the compounds involved. The mathematical description of equilibrium reactions is by (systems of algebraic equations.
(2) Kinetic Reactions: irreversible and revisable reactions that have not yet reached equilibrium. The reaction velocity depends on the actual reaction mechanism. The mathematical description of kinetic reactions is by systems of ordinary differential equations.

In the mathematical description of reactive solute transport, the transformation rates r [$\mathrm{M} / \mathrm{L}^{3} \mathrm{~T}$] appear as source and sink terms of the involved compounds.

$$
R \frac{\partial c}{\partial t}=-v \frac{\partial c}{\partial x}+D \frac{\partial^{2} c}{\partial x^{2}}+r_{w}+\frac{\left(1-n_{e}\right)}{n_{e}} r_{s}
$$

Specific Reaction Rate r [M/LT$\left.{ }^{3}\right]$ of Chemical Transformations

Reactions leading to the chemical transformation of the compounds:
(1) Equilibrium Reactions: in which the concentrations (activities) of the products and educts (original compounds) are in a fixed ratio. The equilibrium can be calculated from thermodynamic properties of the compounds involved. The mathematical description of equilibrium reactions is by (systems of algebraic equations.
(2) Kinetic Reactions: irreversible and revisable reactions that have not yet reached equilibrium. The reaction velocity depends on the actual reaction mechanism. The mathematical description of kinetic reactions is by systems of ordinary differential equations.
(3) Homogeneous Reactions: are reactions among compounds within the same phase (e.g., acid-base reactions in aqueous solutions).

In the mathematical description of reactive solute transport, the transformation rates r [$\left.\mathrm{M} / \mathrm{L}^{3} \mathrm{~T}\right]$ appear as source and sink terms of the involved compounds.

$$
R \frac{\partial c}{\partial t}=-v \frac{\partial c}{\partial x}+D \frac{\partial^{2} c}{\partial x^{2}}+r_{w}+\frac{\left(1-n_{e}\right)}{n_{e}} r_{s}
$$

Specific Reaction Rate r [M/LT$\left.{ }^{3}\right]$ of Chemical Transformations

Reactions leading to the chemical transformation of the compounds:
(1) Equilibrium Reactions: in which the concentrations (activities) of the products and educts (original compounds) are in a fixed ratio. The equilibrium can be calculated from thermodynamic properties of the compounds involved. The mathematical description of equilibrium reactions is by (systems of algebraic equations.
(2) Kinetic Reactions: irreversible and revisable reactions that have not yet reached equilibrium. The reaction velocity depends on the actual reaction mechanism. The mathematical description of kinetic reactions is by systems of ordinary differential equations.
(3) Homogeneous Reactions: are reactions among compounds within the same phase (e.g., acid-base reactions in aqueous solutions).
(4) Heterogeneous Reactions: involve compounds in different phases. All precipitation and dissolution reactions as wells as (practically) all biotransformations are heterogeneous reactions.

In the mathematical description of reactive solute transport, the transformation rates r $\left[\mathrm{M} / \mathrm{L}^{3} \mathrm{~T}\right]$ appear as source and sink terms of the involved compounds.

$$
R \frac{\partial c}{\partial t}=-v \frac{\partial c}{\partial x}+D \frac{\partial^{2} c}{\partial x^{2}}+r_{w}+\frac{\left(1-n_{e}\right)}{n_{e}} r_{s}
$$

Specific Reaction Rate r [M/LT$\left.{ }^{3}\right]$ of Chemical Transformations

Reactions leading to the chemical transformation of the compounds:
(1) Equilibrium Reactions: in which the concentrations (activities) of the products and educts (original compounds) are in a fixed ratio. The equilibrium can be calculated from thermodynamic properties of the compounds involved. The mathematical description of equilibrium reactions is by (systems of algebraic equations.
(2) Kinetic Reactions: irreversible and revisable reactions that have not yet reached equilibrium. The reaction velocity depends on the actual reaction mechanism. The mathematical description of kinetic reactions is by systems of ordinary differential equations.
(3) Homogeneous Reactions: are reactions among compounds within the same phase (e.g., acid-base reactions in aqueous solutions).
(4) Heterogeneous Reactions: involve compounds in different phases. All precipitation and dissolution reactions as wells as (practically) all biotransformations are heterogeneous reactions.
(5) Catalyzed Reactions: require a catalyst which reacts with the original compounds in an initial step but is recovered in a later step. A catalyst is not consumed in the net reaction, although it is involved in intermediate steps. Most biotransformations are catalytic (here the catalysts are called enzymes). The transformation rates of catalytic reactions are often proportional to the amount of the catalyst.

In the mathematical description of reactive solute transport, the transformation rates r [$\left.\mathrm{M} / L^{3} \mathrm{~T}\right]$ appear as source and sink terms of the involved compounds.

$$
R \frac{\partial c}{\partial t}=-v \frac{\partial c}{\partial x}+D \frac{\partial^{2} c}{\partial x^{2}}+r_{w}+\frac{\left(1-n_{e}\right)}{n_{e}} r_{s}
$$

Exercise 1: Breakthrough Curve

$$
\frac{\partial c}{\partial t}=-v \frac{\partial c}{\partial x}+D \frac{\partial^{2} c}{\partial x^{2}}
$$

$$
R \frac{\partial c}{\partial t}=-v \frac{\partial c}{\partial x}+D \frac{\partial^{2} c}{\partial x^{2}}
$$

$$
R \frac{\partial c}{\partial t}=-v \frac{\partial c}{\partial x}+D \frac{\partial^{2} c}{\partial x^{2}}+r_{w}+\frac{\left(1-n_{e}\right)}{n_{e}} r_{s}
$$

Concentration Distribution at time $\mathbf{t}=\mathbf{0}$

Concentration Distribution at time $\mathrm{t}_{\mathbf{1}}>0$

c) Effect of advection and dispersion

Effect of advection, dispersion, sorption (linear isotherm)

Effect of advection, dispersion, sorption and degradation

