
Water and Climate Change

Sustainable Development, Environmental
and Policy Issues

Edited by

Trevor M. Letcher

School of Chemistry, University of KwaZulu-Natal,
Durban, South Africa



CHAPTER 11

Groundwater sustainability in a digital
world
Ahmed S. Elshall1, Ming Ye1,2 and Yongshan Wan3

1Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL,
United States, 2Department of Scientific Computing, Florida State University, Tallahassee, FL,
United States, 3Center for Environmental Measurement and Modeling, United States Environmental
Protection Agency, Gulf Breeze, FL, United States

Chapter Outline
11.1 Introduction 215

11.2 Groundwater sustainability 217

11.3 Digital groundwater 220

11.4 Internet of Things�based data collection 221

11.5 Web-based data sharing 222

11.6 Workflow for data processing 225

11.7 Scenarios for data usage 228

11.8 Perspectives of web-based groundwater platforms 230

11.9 Disclaimer 233

Acknowledgments 233

References 234

11.1 Introduction

Beneath the Earth’s surface, groundwater (GW) flows in the pores, fractures, and conduits

of the aquifers, which are water-saturated soil and rock formations that contain and transmit

significant quantities of water under normal field conditions (Hornberger et al., 2014).

Making up more than 97% of the liquid freshwater on Earth, GW supplies more than half

of the drinking water, approximately 40% of the irrigation water, and about one third of

industrial freshwater (UN-Water, 2018). GW is critical for supporting many terrestrial,

aquatic, and marine GW-dependent ecosystems. In addition, GW is a manageable buffer to

floods, seasonal variations of surface water (SW), and droughts. However, water users’ self-

interests are leading to the depletion of more than half of the largest aquifers on the Earth,
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illustrating the tragedy of the commons (Elshall et al., 2021). GW systems are stressed

through GW over-pumping and by contamination from point and nonpoint sources. Impacts

of excessive pumping include the degradation of GW-dependent ecosystems, saltwater

intrusion, mobilization of heavy metals, and land subsidence. Due to inaction, it is now

globally recognized that the on-going GW over-pumping and water quality degradation

could transform areas of economic expansion into regions of poverty (Elshall et al., 2021).

These adverse impacts call for action to ensure GW sustainability (Gleeson et al., 2019). As

a result, major policy reforms have been approved in many countries around the globe

(Elshall et al., 2020, 2021) such as the State Water Code of Hawaii (1987), the National

Water Act of South Africa (1998), European Union Water Framework Directive (EU-WFD,

2000), National Water Initiative in Australia (2004), Water Sustainability Act in British

Columbia (2014), and Sustainable Groundwater Management Act in California (SGMA,

2014). Such policy reforms are crucial for achieving the Sustainable Development Goals

(SDGs) of the United Nations’ 2030 Agenda, particularly SDG 6 “Clean water and

sanitation.” GW sustainability is also important for SDG 2 “Zero hunger” through

supporting sustainable agriculture, SGD 7 “Affordable and Clean Energy” through ground

source heat pumps, SGD 13 “Climate action” as GW is important for mitigating impacts of

climate change such as droughts and floods, SDG 14 “Life below water” through

supporting marine GW-dependent ecosystems, and SDG 15 “Life on land” through

supporting terrestrial GW-dependent ecosystems. GW sustainability in a digital world is

also important for SDG 11 “Sustainable cities and communities” as digital GW can be a

main component in smart city.

This chapter discusses how current digital transformation can shape the future of

sustainable GW management and contribute to the success of GW policy reforms. We are

in a period of human history where technological changes are happening at an exponential

rate (Roser & Ritchie, 2013). These rapid technological changes are driving the current

digital transformation of the fourth industrial revolution, which is characterized by artificial

intelligence, big data, cloud computing, cyber-physical systems (CPS), Internet of Things

(IoT), and other smart technologies. Each industrial revolution is characterized by a

disruptive technology that creates a shift in how we run the world, leading to changes in the

social framework and scientific research as shown in Fig. 11.1. The term fourth industrial

revolution (a.k.a., 4IR and Industry 4.0) was first introduced by a team of scientists

developing a high-tech infrastructure strategy for the government of German in 2011, and

was the theme of the World Economic Forum Annual Meeting in 2016 (Schwab, 2016).

With respect to scientific research, the reader is referred to Hey et al. (2009) for details

about the paradigm shift to the nature of science, and the fourth paradigm of “data-intensive

scientific discovery” (Hey et al., 2009). How the digital transformation of the fourth

industrial revolution is advancing the operationalization of GW sustainability policies is the

subject of this chapter.
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11.2 Groundwater sustainability

GW sustainability can be defined as “maintaining long-term, dynamically stable storage

[and flow] of high quality groundwater using inclusive, equitable, and long-term

governance and management” (Gleeson et al., 2020). GW sustainability considers a

combination of multiple aquifer performance and governance factors, and as illustrated in

Fig. 11.2, requires a participation-based multiprocess approach with broad uncertainty

analysis (Elshall et al., 2020, 2021; Pierce et al., 2013).

A basic component of GW sustainability evaluation is multiprocess modeling (Fig. 11.2). A

multiprocess approach accounts for the coupled water�ecology�human systems. In the water

system, modeling the SW�GW system generally involves the use of mechanistic numerical

models (Henriksen et al., 2008), phenomenological models such as analytical functions (Miro &

Famiglietti, 2018), and data-driven machine learning models (Salem et al., 2017). With respect

to the ecology system, considering ecosystem services of GW-dependent ecosystems is generally

through defining ecological and ecosystem service targets with indicators and thresholds

established for each target. An adaptive management process, which is learning-by-doing, is

generally used to update the targets and indicators (Rohde et al., 2020). Although developing

predictive GW and ecological models to prioritize the most effective management strategies can

Figure 11.1
An inexact outline of four industrial revolutions and corresponding paradigms with respect to the

society (Schwab, 2016) and scientific research (Hey et al., 2009).
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be challenging, these models are recommended for high-capacity pumping (Saito et al., 2021).

The human system focuses on GW supply needed for agricultural, municipal, and industrial

purposes. Accounting for human activities can be achieved through simple approaches such as

pumping projection based on population projection (Urrutia et al., 2018), and recharge projection

based on “best-guess” land use and landcover changes and similar forms of scenario analysis

(Bremer et al., 2021). More elaborate approaches include integrated water resources management

(Feng et al., 2018), hydroeconomic modeling (Mulligan et al., 2014), and socio-hydrology

(Castilla-Rho et al., 2019). While integrated water resources management promotes the joint

management of water, land, and other natural resources, hydroeconomic modeling aims at

optimizing the economic objectives of a water�ecology�human system, and socio-hydrology is

a more descriptive approach that integrates human activities as an endogenous component of the

water-ecology system (Elshall et al., 2021).

Figure 11.2
Multiprocess modeling, uncertainty analysis, and participation are three basic components of
groundwater sustainability evaluation with sphere number reflecting the increasing degree of

integration. Source: Modified from Elshall, A. S., Arik, A. D., El-Kadi, A. I., Pierce, S., Ye, M., Burnett, K. K.,
Wada, C., Bremer, L. L., & Chun, G. (2020). Groundwater sustainability: A review of the interactions between
science and policy. Environmental Research Letters. ,https://doi.org/10.1088/1748-9326/ab8e8c..

218 Chapter 11

https://doi.org/10.1088/1748-9326/ab8e8c


Modeling tools are advancing to account for coupled water�ecology�human systems. For

example, MODFLOW One-Water Hydrologic Flow Model version 2 (MF-OWHM2, Boyce

et al., 2020) is an integrated hydrologic model with tight coupling of GW, SW, and vertical

unsaturated flows. MF-OWHM2 simulates multiple processes such as landscape processes (e.g.,

land use and crop simulation, root uptake of GW, and irrigation demand estimation), reservoir

operations, aquifer compaction and subsidence, and saltwater intrusion (using sharp-interface).

Also, MF-OWHM2 produces a binary flow file for use with MT3DMS and MT3DUSGS for

transport simulation in the saturated and unsaturated zones, respectively. GSFLOW (Markstrom

et al., 2008; Regan & Niswonger, 2021) couples the Precipitation-Runoff Modeling System

(PRMS-V) with MODFLOW-2005 and MODFLOW-NWT, and can be used with the transport

models of the MODFLOW family. Wei et al. (2019) present Soil and Water Assessment Tool

(SWAT)-MODFLOW-RT3D that tightly couples the semi-distributed watershed model SWAT

with the GW flow model MODFLOW and the GW solute reactive transport model RT3D in a

watershed system. For aquifers with density-dependent flow (e.g., coastal aquifers), several

coupled commercial models (e.g., FEFLOW, HydroGeoSphere, and MIKE-SHE) are available.

Coupled public domain models with density-dependent flow are relatively immature, which is

particularly true for karst aquifers with conduit flow.

Participation is the second basic component of effective GW sustainability evaluation

(Fig. 11.2). This is particularly important because human behavior and societal preferences can

be considered a root cause of unsustainability as well as part of the solution (Castilla-Rho et al.,

2019; Elshall et al., 2021). For example, Castilla-Rho et al. (2017) examined human behavior,

cooperation, and collective action, and illustrated tipping points where social norms toward GW

conservation shift abruptly with changes in cultural values. On the other hand, Shalsi et al.

(2019) present an Australian case study in which comanagement through local collective action

was successful in recovering an aquifer that was at risk of depletion and subject to GW quality

degradation including salinization. In addition, the authors suggest that comanagement through

local collective action can improve the social acceptability of new GW initiatives such as

managed aquifer recharge and conjunctive use of SW�GW.

Uncertainty analysis is the third component of effective GW sustainability evaluation (Fig. 11.2).

Uncertainty analysis is an integral part of GW sustainability policy through provisions such as

the precautionary principle in the EU-WFD, and adaptive management in SGMA. In practice,

decisions on GW sustainability in a changing environment are difficult because our scientific

knowledge about complex GW systems is inherently uncertain, and because societal preferences

are difficult to elicit and may be conflicting. This requires a broad uncertainty analysis

accounting for natural and societal aspects (Elshall et al., 2021; Refsgaard et al., 2007).

There are eight essential factors to consider when evaluating GW sustainability at local,

regional, and transboundary scales (Elshall et al., 2020, 2021; Pierce et al., 2013). Among

the eight factors, five factors related to aquifer performance are (1) recharge rates and
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storage conditions, (2) water quality, (3) GW capture, discharge rates, and environmental

flows, (4) natural hazards and threats, and (5) facilities and technologies of water resources

management. Examples of natural hazards and threats are land subsidence due to

over-pumping, sinkholes, and severe prolonged droughts. Examples of facilities and

technologies are pumping and water distribution systems as well as managed aquifer

recharge. Factors (1�4) are related to the physical aquifer system, and Factor (5) is related

the infrastructure system. Three factors related to aquifer governance are (6) legal and

institutional constraints, (7) societal values and preferences, and (8) economic feasibility.

Societal values and preferences include instrumental, intrinsic, relational, and esthetic

values, intragenerational and intergenerational equity, public health, resilience, indigenous

rights, and consensus as described by Elshall et al. (2020). Factor (6) is related to

institutional system, and Factors (7�8) are related to the socioeconomic system.

While this section only provides a brief overview on the concept of GW sustainability, for

detailed information about GW depletion, challenges, and sustainability the reader is

referred to recent studies (Bierkens & Wada, 2019; Elshall et al., 2020, 2021; Gleeson

et al., 2020; Lall et al., 2020; Rinaudo et al., 2020). Given this brief overview, effective

application of such a participation-based and multiprocess approach with broad uncertainty

analysis remains problematic for both the academic community and water managers

(Elshall et al., 2020; Thompson et al., 2021). In the rest of this chapter we show how the

current digital transformation can influence our GW sustainability practices.

11.3 Digital groundwater

Initiatives such as the INSPIRE Directive (https://inspire.ec.europa.eu) of the EU Commission,

and the EarthCube initiative for geosciences (https://www.earthcube.org) of the National

Science Foundation (NSF) in the US promote the increased use of information and

communications technology (ICT) to build cyberinfrastructure for geosciences. This is mainly

to assist in the creation, dissemination, and application of geoscientific data and research to the

benefit of society. For example, to support sustainable development, the Infrastructure for

Spatial Information in the European Community (INSPIRE) is a Directive to establish an EU

spatial data infrastructure (SDI) to support environmental policies and environmental

applications. The EarthCube aims at transforming the conduct of geoscience research,

education, and accordingly their services to the society, by encouraging the geoscience

community to systematically build geoscience cyberinfrastructure through community dialogue,

governance, and a common vision (NSF, 2015). Research agendas for intelligent systems and

digital initiatives are emerging to serve this digital transformation (Chen et al., 2020; Gil et al.,

2018; Hubbard et al., 2020). For example, the Digital Water Program (https://iwa-network.org/

programs/digital-water) of the International Water Association serves as a starting point to

initiate the dialogue on digital water, and to share solutions and experiences in applying digital
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solutions for water utilities. In addition, strategy and recommendations for US Executive

Presidential Order 13956 (10/16/2020)—Modernizing America’s Water Resource Management

and Water Infrastructure—emphasize the importance of the next generation water observation

networks and water resources modeling capability, leveraging on ICT (Petty et al., 2021).

An example of this digital transformation is smart GW management, which can improve GW

sustainability practices. Many aspects of geoscience domains such as GW hydrology pose novel

and challenging problems for intelligent systems research, which would significantly transform

intelligent systems and greatly benefit the geosciences in turn (Gil et al., 2018). Intelligent systems

are becoming more common, and they can be “intelligent/smart anything” such as smart

agriculture, smart city, intelligent transportation system, smart home, and smart health care. For

example, smart agriculture includes precise agriculture and smart irrigation (i.e., to estimate and

supply the fertilizer and water needs at the resolution of individual plants), and smart greenhouse

by controlling the physical environment to increase crop yield. Smart city includes intelligent

transportation systems, smart grids, smart mobility, smart buildings, smart street lighting, online

banking, telehealth, a digital twin of the city, and smart devices to allow citizens to connect to the

smart city services. A digital twin of a city is a virtual representation of the systems of the city to

enable stakeholders to monitor and manage water, air quality, energy, mobility, and other services

in the city. While certain areas such as smart city and smart agriculture have reached a certain

level of maturity, smart GW management is still evolving. Yet certain cross-disciplinary

technologies and elements are shared among all these smart applications such as artificial

intelligence, big data, blockchain technology, cloud computing, CPS, digital twin, IoT, workflows,

and web-based platforms. For example, IoT is a deeply interconnected ecosystem of sensors,

cameras, computers, smart systems, connected devices, smart devices, and other technologies to

share data, work together to make decisions, and operate autonomously in the background. A web-

based platform (a.k.a., science gateway, citizen science website, hub, e-Science, e-Research, virtual

community platform, virtual research environment, virtual laboratory, etc.) combines a variety of

cyberinfrastructure components (e.g., sensors, cloud computing, high performance computing,

workflows, data repository, visualization tools, analysis tools, simulation tools, and gaming tools.)

to support data collection and applications such that users can access diverse resources and

communicate. A workflow (a.k.a., workflow software, scientific workflow system, workflow

management system, workflow engine) is a software that manages processes and automates a

process or more. Putting these pieces together to develop smart GW management applications is

an emerging field. In this chapter, we provide a brief overview on emerging technologies and

discuss how these technologies can change our sustainable GW management practices.

11.4 Internet of Things�based data collection

Advancement of sensor devices, and the inexpensive easy-to-use IoT-based technologies,

leads to low-cost, low-power, open source, and do-it-yourself (DIY) sensors and data

Groundwater sustainability in a digital world 221



logging solutions. Such high-quality scientific measurements for environmental monitoring

applications can be made using inexpensive and off-the-shelf components (Horsburgh et al.,

2019). Examples of these sensor technologies and data logging solutions include

microcontroller units such as the Arduino suite of products, single-board computers like the

Raspberry Pi, and the diverse array of IoT devices (Horsburgh et al., 2019). These IoT-

based low-cost and DIY sensing systems are gradually emerging. For example, the Openly

Published Environmental Sensing project (https://open-sensing.org) at Oregon State

University, which focuses on developing environmental sensing projects and research,

offers tutorials for students and practitioners on DIY sensor networks. Currently in

academic labs, an IoT-based borehole sensor, which measures water pressure and quality,

can be an order of magnitude cheaper than a typical commercial senor. Examples of

low-cost, community-based, and real-time GW monitoring networks with sensor-to-web

data streaming are presented by Drage and Kennedy (2020) in Nova Scotia, Canada and by

Calderwood et al. (2020) in California. Sensor data can be streamed to a web-based

platform through Wi-Fi (Drage & Kennedy, 2020), cellular connection (Drage & Kennedy,

2020), and satellite (Thomas et al., 2019). Note that a web-based platform is generally

accessed over a network connection, using a web browser or as a client-based desktop and

mobile application, with most of the processing occurring on external servers.

The applications of the IoT-based sensors are diverse. These IoT-based, low-cost, and DIY

sensing networks that stream data to a web-based platform can be particularly useful for

developing countries (Maroli et al., 2021; Narendran et al., 2017). For example, Thomas

et al. (2019) demonstrate that sensor network implementation across large spatial scales in

arid regions in Africa can provide both practical benefits such as real-time monitoring of

pump malfunction, and more importantly GW pumping data that are otherwise difficult to

collect. For details about IoT-based monitoring networks and their related applications in

smart water management, the reader is referred to recent review articles (Jan et al., 2021;

Salam, 2020; Varadharajan et al., 2019). As these IoT-based low-cost sensing systems are

allowing easy collection of high-frequency data, this is accordingly changing our practices

for data logging, transmission, storage, sharing, processing, and usage as discussed below.

11.5 Web-based data sharing

To improve GW SDI and to sustainably manage water resources, several data networks are

already emerging in hydrology. SDI, which consists of spatial data, metadata, models, tools,

and interactive user interfaces, is a digital infrastructure that enables the sharing and

flexible use of data. The internet of water for sharing and integrating water data is emerging

through diverse water platforms that enable open water data, integrate existing public water

data, and connect regional data sharing communities (Patterson et al., 2017). These water

platforms are increasing in number not only in response to technological advances, societal
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needs, and initiatives such as EarthCube, but also due to policy changes. For example, the

Subcommittee on Water Availability and Quality of the US Office of Science and

Technology Policy enacted the Open Water Data Initiative in 2014, which was chartered

under the Department of the Interior’s Advisory Committee on Water Information

(http://acwi.gov/spatial/index.html) as an organized effort to provide water data, and

community applications built on these data (Bales, 2016).

A water platform could be nonspatially bounded, forming around a unified purpose

(Patterson et al., 2017). For example, HydroShare (https://www.hydroshare.org) of the

Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI) is a

water platform with generic data model and content packaging scheme to allow the

hydrologic science community to store, manage, share, publish, annotate, and collaborate

around diverse types of data and models (Horsburgh et al., 2016; Morsy et al., 2017).

Another example is WHYMAP (https://www.whymap.org)—the World-wide

Hydrogeological Mapping and Assessment Program, which among its main purposes are to

summarize GW information on the global scale, provide a GW resources map of the world,

and provide map information for international discussion on water. The Water Information

Network System of Intergovernmental Hydrological Program of the UNESCO (https://en.

unesco.org/ihp-wins) is an open access platform for sharing water-related information and

connecting water stakeholders from developed and developing countries. WaterShare

(http://www.watershare.eu) is a platform for global to local collaboration, and knowledge

sharing of water solutions and innovations to contribute to achieving the SDG6. In addition

to the abovementioned discipline-specific repositories, there are general repositories for data

sharing and collaboration. Stall et al. (2020) provide a comparison of general repositories

such as the Open Science Framework (https://osf.io) for project management through the

entire project life cycle based on open science best practices. The choice of the best

repository for data sharing is case specific depending on the project size and features,

funding agency requirements, community needs, and many other factors. Generally,

choosing a well-established and trustworthy hydrology-specific repository would support

the hydrology community.

A web-based water platform could be spatially bounded for data and model sharing and

community collaboration (Patterson et al., 2017). For example, the online GW database of

the Texas Water Development Board is a spatially bounded GW platform that allows access

to information about Texas aquifers (Rosen et al., 2019), following the FAIR Data

Principles such that data are Findable, Accessible, Interoperable, and Reusable (Wilkinson

et al., 2016). This platform allows users to access Texas GW data, understand the

implications of contamination events, and determine long-term GW availability trends

(Rosen et al., 2019). An example of a more generic regional platform that is also based on

FAIR Data Principles is the Gulf of Mexico Research Initiative Information and Data

Cooperative (https://data.gulfresearchinitiative.org), which is a data management system for
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the full life cycle of data for researchers in the Gulf of Mexico. A spatially bounded GW

platform is not necessarily regional but can range from a local to transboundary scale data

networks that supply heterogeneous data to users. For example, through conformance to

international standards, SDI architectures, and shared vocabularies, the Canadian

Groundwater Information Network and the US National Groundwater Monitoring Network,

are examples of large GW data networks that can be interoperable, allowing public access

to harmonized GW data from shared international borders (Brodaric et al., 2016). A

web-based platform for GW data could be spatially bounded not only to share data and

models, but also to serve as a platform for community collaboration as discussed in

Section 11.8.

Web-based data sharing requires SDI and standards that shape the data model. A data

model determines the vocabulary and structure of how data is collected, stored, processed,

queried, and visualized in a data network. Interoperability among data models permits a

common language among data networks to make data quarriable and seamlessly usable

across data networks regardless of its original heterogeneity. Accordingly, standardization

across data models is needed. For example, GroundWaterML2 (GWML2, Brodaric et al.,

2018) consists of data structures and encoding guidelines for hydrogeology web data

exchange. GWML2 is a new global standard for international GW data representation that

is developed by the Groundwater Standards Working Group of the Open Geospatial

Consortium (OGC). GWML2 is compliant with the concepts, standards and technologies of

SDI, and can be used in conjunction with a variety of web services as central structure for

the query and transport of data. This enables online data interoperability at multiple levels

amongst numerous and heterogeneous data sources. Similarly, the EU-wide INSPIRE

addresses 34 spatial data themes (e.g., INSPIRE-Meteorology, INSPIRE-Geology,

INSPIRE-Landcover, INSPIRE-Landuse, and INSPIRE-Hydrograph) that are relevant to the

environment to ensure data accessibility and seamless data combination from different

sources and across different scales and levels (Ilie & Gogu, 2019). The INSPIRE-

Hydrogeology is part of the INSPIRE-Geology.

The hydrology community pursues achieving more compatibility among different data

representations. This requires interoperability between their representations at the levels of

syntactic, schematic, and semantic that include the differences in terminology and

definitions (Hahmann et al., 2016). For example, by describing how terms (e.g., geologic

unit or water body) are used in different data models, a conversion to and from GWML2

with INSPIRE-Hydrogeology is seamless. In addition, although a significant attention has

been devoted to the sharing and reusing hydrological data than hydrological models,

flexible and general metadata frameworks for model sharing are emerging across wide

variety of models (Morsy et al., 2017). Finally, data configuration managers are needed to

customize data requirements. For example, Wang et al. (2020) propose a universal data

exchange model that provides data to users through data services rather than through
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downloading raw data files. This data configuration manager additionally provides

interactive programming tools for data customization, and a component-based data viewer

of different types of hydrological information (Wang et al., 2020).

11.6 Workflow for data processing

The scope of the workflow depends on the level of vertical integration and horizontal scope

as shown in Fig. 11.3. For example, after manual or automatic data retrieval from sensors,

data networks, collaborative data updates, and user data, the workflow for data processing

can range from basic data analysis and visualization to model-based analysis and decision

support. Dahlhaus et al. (2016) developed a GW web-based platform for the State of

Victoria in Australia with tools for data querying and 3D visualizations. This includes

simple data analysis such as the ability to query the predicted depth to water table, water

Figure 11.3
Different components of the workflow. The workflow can expand through forward and backward
vertical integration of different components (y-axis), and through expanding the scope of each

component by considering further subcomponents and advancements (x-axis). Blocks highlighted
in orange represent an example of a basic workflow where the data is manually collected and

stored on a generic web-based platform for data sharing, and then the workflow retrieves the user
data, update and run a SW�GW model, analyze the model outputs with respect to a policy

problem, and reports figures and tables. SW�GW, Surface water and groundwater.
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quality and hydrostratigraphy at any selected point, and provides virtual borehole logs at

any selected location in Victoria. A workflow with a wider data processing scope can

include executing existing model instances or developing new model instances, given both

phenomenological and process-based GW model programs. Note that a model program is a

logical representation of ideas as source codes or compiled executables that can be used to

execute many model instances with different input files and generate output files. An

example of model instance is the MODFLOW input files representing the hydrological

settings and conditions at a specific site and a given scenario. Automating the workflow for

data processing requires an application programming interface (API) to communicate with

the model in a batch mode that is without end user interaction. For example, the Python-

based FloPy facilitates interacting with MODFLOW to configure input files, execute model,

and analyze model outputs (Bakker et al., 2022). Similarly, PhreeqPy provides Python tools

to work with PHREEQC for reactive transport modeling (Charlton & Parkhurst, 2011).

Additionally, several tools are available as interfaces among different models and

components in a batch mode. For example, the Open Modeling Interface Standard

(OpenMI) defines an interface that allows models to run simultaneously and exchange data

in memory at run-time (e.g., at each time step) making model integration feasible (Becker

& Burzel, 2016; Gregersen et al., 2007). Upton et al. (2020) use OpenMI to develop a

multiscale GW modeling method to evaluate GW sustainability. Coupling and interfaces

tools for integrated water resources modeling is an active research area. Malard et al.

(2017) developed a tool for dynamic coupling of system dynamics and physically-based

models that makes coupled models much more reproducible and accessible to stakeholders.

Note that system dynamics is an approach to understand the interactions, behavior, and

feedback loops of constituent components of a system. For detail about model linking,

integrated modeling, and interface standard, Zhang et al. (2021) discuss sharing, reusing,

and interoperation of models across different standards (e.g., OpenMI, BMI, and

OpenGMS-IS).

Workflows with larger scopes are emerging. The scope of the workflow for data processing

can expand horizontally by including more advanced levels of GW modeling such as

integrated modeling and digital twin, or by supporting more data usage applications

(Fig. 11.3). The scope of the workflow for data processing component can expand vertically

with forward and backward integration with other components (e.g., data collection, data

sharing, and data reporting). For example, De Filippis, Stevenazzi, et al. (2020) used

commonly available standards and tools to develop a workflow to collect and process

vadose-zone data from field sensors to simulate percolation to the water table with

automatic generation of summary reports like plots and tables. Barnhart et al. (2010)

develop a data assimilation method that integrates GW contaminant transport models with

wireless sensor networks. Su et al. (2020) propose a similar a web-based workflow for GW

simulation. In addition, a workflow can link the GW models to model development and
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decision-support tools for parameter estimation, data assimilation, surrogate modeling,

sensitivity analysis, simulation optimization, agent-base modeling, and uncertainty

quantification. These tools are generally based on optimization algorithms, sampling

algorithms, and machine and deep learning algorithms.

Diverse workflows have been developed to process data for analyzing SW�GW resources.

Workflows with IoT-based data acquisition and wide scope of data processing are nascent

in GW hydrology relative to SW hydrology. Examples of simple to more involved

workflows in SW hydrology are numerous. For example, to solve the lack of transparency

on model creation, Chawanda et al. (2020) developed the workflow software

(SWAT1AW), which is an automatic workflow (AW) that automates the creation of

catchment hydrological model instances for the SWAT model program using user collected

data. To increase the SWAT model usage for nontechnically trained stakeholders and

decision makers, McDonald et al. (2019) developed a web-based SWATOnline workflow

with modular web applications such as automatic climate data retrieval from the National

Aeronautics and Space Administration (NASA) servers. Hou et al. (2019) review the input

data preparation methods from manual data preparation to intelligent geoprocessing, which

allows full automated data preparation for geospatial modeling and is adaptive to

application contexts. An emerging trend is to move toward more vertical integration and

horizontal advances and expansion (Fig. 11.3). For example, Taylor et al. (2021) developed

a web-based platform with cloud computing that standardizes the user workflow and

preintegrates models and data. This allows users such as water planners and educators to

rapidly develop case studies for basin-scale water assessment and scenario investigation to

assess changes arising from developments in agriculture, water storages, population growth,

and climate changes.

In GW hydrology, more integrated workflows are also developing. For example,

FREEWAT (Rossetto et al., 2018), which is funded by the EU Commission, integrates open

source models and tools for SW�GW management supporting data collection, data sharing,

and data analysis for supporting model-based planning and decision-making. FREEWAT

uses the FloPy Python library to connect SW�GW models with a toolbox for model

calibration and uncertain quantification in a QGIS-enabled and integrated environment for

spatial data management, processing, and visualization. QGIS is an open-source cross-

platform geographic information system software. The FREEWAT supports a number of

models, including the integrated SW�GW MF-OWHM, a Crop Growth Module for crop

yield modeling, MT3DUSGS and MT3DMS for solute transport in the unsaturated and

saturated zones, and SEAWAT for density-dependent GW flow. De Filippis, Pouliaris, et al.

(2020) displays a total of 13 case studies in European and non-European countries where

the FREEWAT platform along with ICTs were applied for SW�GW management,

transboundary aquifer management, protection of GW-dependent ecosystems, and rural

water management. The case studies show that improved access to data and the portability
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of models and model results can help promote water sustainability from the local to basin

scales.

In addition to data analysis with respect to SW�GW resources, workflows are emerging to

address the other components of GW sustainability evaluation (Fig. 11.2), such as

GW-dependent ecosystems, human activities, uncertainty analysis, and participation.

Workflows for the protection of GW-dependent ecosystems are emerging (Tague & Frew,

2021; Turner et al., 2020; Wohner et al., 2020). Workflows generally accounts for human

activities using simple techniques such as scenario analysis. For example, Bojovic et al.

(2018) developed a web-based platform to facilitate stakeholder collaboration in the

analysis of water management adaptation options in the Alps. As integrating social and

hydrologic data in an elaborate socio-hydrology analysis can be generally challenging, Flint

et al. (2017) provide social water science data classification and recommendations on data

management considerations for cyberinfrastructure purposes. With respect to uncertainty

analysis, White et al. (2020) provided a MODFLOW-based GW modeling framework that

uses FloPy to develop a workflow for parameter estimation and uncertainty quantification.

With respect to participation, several levels and forms of participation exist such as

collaborative modeling with key stakeholders, general public participation for planning and

decision-making, peering for scientific research, commons-based peer management

including codesign and codecision-making, among many other forms. Examples of mature

workflows and platforms for spatially bounded and community centered collaboration

include the Bay Delta Live for the San Francisco Bay Delta estuary in California (https://

www.baydeltalive.com) for water and ecosystem services management. Bay Delta Live, in

which Southern California’s Metropolitan Water District invested two million dollars over

five years to help launch the platform, includes modules for collaboration with a desktop

and phone applications providing real-time information for daily decision-making (Jooste,

2017).

11.7 Scenarios for data usage

Web-based platforms for GW sustainability can support a number of application scenarios.

For example, Brodaric et al. (2018) identify five data usage scenarios that motivate

GWML2, which are commercial scenario, policy scenario, environmental scenario,

scientific scenario, and technologic scenario. The policy scenario includes administrative

reporting on withdrawal limits, sharing information across different water authorities, and

incentive mechanisms for GW policy implementation. For example, in response to SGMA a

pilot project in Sacramento-San Joaquin River Delta, California is developing a low-cost

satellite connected sensors with real-time GW data streaming to IBM Blockchain Platform

(IBM Research, 2019). This respones to SGMA mandate to the creation of local groups to

develop and implement solutions to make their local GW usage sustainable by 2040. The
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environmental scenario includes components such as monitoring, protection, and

management GW-dependent ecosystems. For example, the Bay Delta Live web-based

platform focuses on understanding the complex and dynamic ecosystem of the Sacramento-

San Joaquin Bay Delta (Patterson et al., 2017).

An example of the commercial scenario is to estimate the cost and timeline for drilling a

new well. A well driller can use a web platform to explore the local geology, which can

inspect wells located near the target area in terms of the lithology, water level, yield, and

total depth at each well (Brodaric et al., 2018).

Scientific scenario includes data sharing, data usage, and peering to perform multiple

scientific activities such as data analysis, model development, data worth analysis, and

model-based analysis. For example, the HydroShare of CUAHSI was primarily developed

to facilitate data and model sharing in the academic community. A spatially bounded

example is a web-based workflow developed by Shuler and Mariner (2020) for

collaborative GW modeling with key stakeholders at the American Samoa. Bandaragoda

et al. (2019) discuss how the existing cyberinfrastructure tools and resources can enable

collaborative numerical modeling in Earth sciences. Additionally, this can serve as a

platform for peering within the scientific community and with stakeholders, and broadens

the use of scientific applications such as integrated-model simulation and gaming to

stakeholders. Moreover, these web-based platforms with monitoring data can support

machine learning-based data exploration (Rau et al., 2020), and GW representation in

continental to global scale models (Gleeson et al., 2021).

The technologic scenario involves data delivery situations, which require compatibility with

other hydrogeological data representations to enable data interoperability within a GW data

network, and between different data networks (Brodaric et al., 2018). In addition, this

includes communication with other devices to create a CPS, in which a process is

monitored and controlled through the IoT. For example, Wang et al. (2013) present a case

study in Xiamen City, China, in which an IoT-based online water quality management

system maintains water level of the Scenic river by automatically supplementing reclaimed

domestic wastewater and fresh SW from the Xinglin Bay, and cycling landscape water to

stabilize the water quality. CPS is a widely used technology in smart water applications to

manage water supply networks (Kulkarni & Farnham, 2016; Pan et al., 2015).

Other data usage scenarios are participation and education. Web-based GW platforms allow

open community participation from different physical locations and domains of expertise to

join the GW exploration, to easily exchange ideas with less thresholds as compared to

centralized systems, and to perform comprehensive modeling and analysis tasks

collaboratively (Chen et al., 2020). For example, to help communicate complex

hydrogeological concepts to improve confidence in decision-making, Wolhuter et al. (2020)

developed the 3D Water Atlas of the Surat Basin, Queensland, Australia. This is an
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interactive web-based platform based on a three-dimensional geological model for

visualizing and analyzing hydraulic and hydrogeochemical data from boreholes in a way

that is accessible to a wide audience. Dahlhaus et al. (2016) show that the web-based GW

platform of the State of Victoria, which was developed outside of the government to meet

end user needs and educate a broader community, has increased the end user interaction and

participation, empowering society with the value of big data to guide future planning for

sustainable and equitable GW.

Education is a valuable data usage scenario. Bridging sustainability science, Earth science,

and data science requires interdisciplinary education with competencies in data processing

and model development (Pennington et al., 2020). To prepare future hydrologists and

engineers, Lane et al. (2021) present HydroLearn, an open web-based educational platform

to provide a formal pedagogical structure for developing effective problem-based learning

activities. Targeting upper-level undergraduate and early graduate students in hydrology and

engineering, HydroLearn allows the students to explore how well models or equations work

in particular settings or to answer specific problems using real data (Lane et al., 2021).

11.8 Perspectives of web-based groundwater platforms

The advances in technology are enabling the transition toward smart GW management, and

accordingly the increase in the number and scope of web-based GW platforms. This will

change the paradigm for managing GW as these web-based GW platforms enable open

resource and data sharing, open integrated modeling and simulation to be performed, and

open community to grow and expand organically (Chen et al., 2020). Given the

technologies of the fourth industrial revolution, we discuss a spatially bounded, web-based

GW platform with a digital twin for commons-peer management of GW resources. We also

discuss how these platforms can improve GW sustainability practices.

The web-based GW platform connects the workflow with available computing resources

and provides a web-based interface for users. As many of the workflows require extensive

processing power, storage space, and communication speed, they are executed over a large-

scale platform with user interfaces. Users include expert users, who have certain technical

and scientific knowledge about parts of the topic, and general stakeholders, who might

know less about the topic from a technical perspective though they could have ample

indigenous and intuitive knowledge about the topic (Chen et al., 2020). A web-based

platform has several advantages such that the platform users do not need to install software

and manage updates, the platform connects to cloud-based high performing computing

resources, and the platform automatically retrieves data from data networks. Currently,

cyberinfrastructure is reaching a point where it is possible to build open and transparent

environmental modeling systems (Choi et al., 2021). As such, computational environments

are interlinked with sensors and data repositories, supported by APIs for programmatic
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control of the modeling activities and the workflow, serve as gateways to high performance

computing resources, and provide user web-based interfaces (Chen et al., 2020; Choi et al.,

2021; Hubbard et al., 2020).

A spatially bounded web-based GW platform can mature to a digital twin for commons-

based peer management of GW resources. GW workflows are developing to allow for more

advanced data processing. Goodall et al. (2011) discuss modeling water resource systems

using a service-oriented computing paradigm, which is software engineering paradigm that

deals with a complex software system as an interconnected collection of distributed

computational components. An advanced web-based workflow such as the one shown in

Fig. 11.4 is nascent in GW hydrology. The workflow shown in Fig. 11.4 allows for data

search, collection, and harmonization from data networks and sensor-to-web data streaming,

data and model representation following international standards (e.g., OGC standards), and

model programs and instances linkage with decision-support tools. One of the existing

workflows that includes several of the components shown in Fig. 11.4 is FREEWAT, which

can be used and extended for smart GW management especially in regions with historical water

scarcity exacerbated by climate change (Theuma et al., 2017). Other existing tools include

Delft-FEWS (https://oss.deltares.nl/web/delft-fews) that is an open platform that integrates data

and models. For example, van der Vat et al. (2019) use Delft-FEWS to develop the Ganga

Figure 11.4
Components of a web-based groundwater platform with a digital twin for commons-based peer

management of groundwater resources.
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Water Information System (GangaWIS) that contains model inputs and relevant outputs of

SW�GW models that support strategic planning in the Ganga Basin in India.

The workflow scope can be expanded to include a digital twin, which is a virtual presentation

of the aquifer system to enable stakeholders to monitor and manage the SW�GW system,

GW -dependent ecosystems, and GW-dependent human activities (e.g., irrigation and municipal

water supply). A digital twin of the aquifer changes as the physical aquifer changes. For

example, sensor-to-web data streaming and data assimilation techniques update the GW flow

model, water budget calculation, solute transport model, GW-dependent ecosystem indicators,

and GW sustainability indicators. The digital twin can expand in scope to serve as an integrated

GW system in the digital world, which changes as its natural and social counterparts change.

This can be particularly useful in an agricultural setting where this GW digital twin works

together with a smart agriculture system.

The web-based GW platform has a web-based interface for applications. This web-based

interface will typically include a website for static information such site-specific documents and

tutorials, data viewer to present data from the database, and dashboard with different options

related to data viewing, processing, and post-analysis. The web-based platform can be accessed

through a web browser, and as a client-based desktop and mobile application as needed.

A spatially bounded, web-based GW platform can extend beyond merely sharing data,

models, and computational resources, to provide multiple water resources and

environmental management services. “In the future, your performance metric will not be

how many people visit your website, but how many applications your data support”

(ClimateWire, 2015 as cited in Bales, 2016). Section 11.7 presents several data usage

scenarios, and here we expand on the participation and education data usage scenarios.

Participation and education are particularly important for GW sustainability as human

behavior is a root cause of unsustainability, but also part of the solution (Castilla-Rho et al.,

2019; Elshall et al., 2021). Creating a digital representation of the GW system provides a

platform to create a conversation. Providing analysis and digital management tools can

create a space for creativity, build trust, and facilitate commons-peer management of GW

resources. This includes tools for integrated simulation tasks for expert and nonexpert users

with scenario analysis and gaming. Such applications can shift user perspectives by learning

about thresholds, tipping points, and pathways of the coupled water-human system. Digital

management tools include blockchain-based smart contracts and GW credits. For example,

IBM Blockchain Platform has a web-based dashboard for GW users, financers, and

regulators to real-time monitor and track GW data and user transactions including features

such as smart contracts in which transactions are automatically executed when the

conditions are matched (IBM Research, 2019). This platform supports policy and market

mechanisms such as GW individual users share cap, GW credit, GW share purchase, and

GW trading. Thus, these web-based platforms facilities not only the coproduction of data
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(e.g., hydraulic and geochemical data), information (e.g., water budget), and knowledge

(e.g., sustainable pumping limits), but also codecision-making and joint action with respect

to GW pumping and GW trading.

The advancements of these web-based GW platforms can eventually lead to commons-peer

management of GW resources. The term commons-based peer production was coined by

Benkler (2002) to refer to a social-economic phenomenon emerging in which a large number of

people work cooperatively without the traditional firm-based or market-based ownership of the

resulting product. Examples include working on large and small-scale projects, generally, online

(e.g., Wikipedia, Python, Linux, and open source software), but sometimes offline (e.g.,

community gardening). To produce data, knowledge, and goods, commons-based peer

production follows motivational drives and social signals, rather than market prices and

managerial commands (Benkler & Nissenbaum, 2006; Benkler, 2002). Accordingly, commons-

based peer production can be regarded as a virtuous behavior, and a society that provides

opportunities for virtuous behavior is one that is more conducive to virtuous individuals

(Benkler & Nissenbaum, 2006). This is particularly important because among the reasons of

GW unsustainability are the influence of some social groups over less privileged social groups

in water resources governance (Baldassarre et al., 2021; Méndez-Barrientos et al., 2020), and

when individual profits prevail over the need to preserve a common resource (Leduc et al.,

2017). Thus, commons-based peer management improves equity and inclusivity, and can be

regarded as a form of managing the GW as a common-pool resource (Ostrom, 1990). A

common-pool resource (e.g., GW and fishpond) is an economic term referring to a resource that

is shared and available to everyone like public goods, but with variable and limited stock that is

subject to rivalrous consumption like private goods such that each unit consumption subtracts

from the total stock (Hayes, 2021). The common-pool resource is subject to the tragedy of the

commons (Hardin, 1968) that is when individuals try to maximize their self-interest regardless

of the social cost. Unlike public goods that can be utilized without reducing availability for

others, a common-pool resource requires protection to prevent overuse and congestion, and to

ensure continuous and nonexcludable supply. While this generally calls for government

regulation, it additionally calls for commons-based peer management.
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Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B., Rosolem, R.,

Rahman, S., Oshinlaja, N., Maxwell, R., Lo, M.-H., Kim, H., Hill, M., Hartmann, A., Fogg, G., Famiglietti,

J. S., Ducharne, A., . . . Bierkens, M. F. P. (2021). GMD perspective: The quest to improve the evaluation

of groundwater representation in continental to global scale models. Geoscientific Model Development

Discussions, 1�59. Available from https://doi.org/10.5194/gmd-2021-97.

Goodall, J. L., Robinson, B. F., & Castronova, A. M. (2011). Modeling water resource systems using a service-

oriented computing paradigm. Environmental Modelling & Software, 26, 573�582. Available from https://

doi.org/10.1016/j.envsoft.2010.11.013.

Gregersen, J. B., Gijsbers, P. J. A., & Westen, S. J. P. (2007). OpenMI: Open modelling interface. Journal of

Hydroinformatics, 9, 175�191. Available from https://doi.org/10.2166/hydro.2007.023.

Hahmann, T., Stephen, S., & Brodaric, B. (2016). Semantically refining the groundwater markup language

(GWML2) with the help of a reference ontology. International Conference on GIScience Short Paper

Proceedings, 1. Available from https://doi.org/10.21433/B3118cz973mw.

Hardin, G. (1968). The tragedy of the commons. Science (New York, NY), 162, 1243�1248. Available from

https://doi.org/10.1126/science.162.3859.1243.

Hayes, A. (2021). Common-pool resource definition [WWW document]. Investopedia. ,https://www.

investopedia.com/terms/c/common-pool.asp. Accessed 09.13.21.

Henriksen, H. J., Troldborg, L., Hojberg, A. L., Refsgaard, J. C., Højberg, A. L., & Refsgaard, J. C. (2008).

Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a

numerical groundwater-surface water model. Journal of Hydrology, 348, 224�240. Available from https://

doi.org/10.1016/j.jhydrol.2007.09.056.

Hey, T., Tansley, S., & Tolle, K. (2009). The fourth paradigm: Data-intensive scientific discovery.

Hornberger, G. M., Wiberg, P. L., Raffensperger, J. P., & D’Odorico, P. (2014). Elements of physical hydrology

(2nd ed.). Baltimore, MD: JHU Press.

Horsburgh, J. S., Caraballo, J., Ramı́rez, M., Aufdenkampe, A. K., Arscott, D. B., & Damiano, S. G. (2019).

Low-cost, open-source, and low-power: But what to do with the data? Frontiers in Earth Science, 7, 67.

Available from https://doi.org/10.3389/feart.2019.00067.

Horsburgh, J. S., Morsy, M. M., Castronova, A. M., Goodall, J. L., Gan, T., Yi, H., Stealey, M. J., & Tarboton,

D. G. (2016). HydroShare: Sharing diverse environmental data types and models as social objects with

application to the hydrology domain. JAWRA Journal of the American Water Resources Association, 52,

873�889. Available from https://doi.org/10.1111/1752-1688.12363.

Hou, Z.-W., Qin, C.-Z., Zhu, A.-X., Liang, P., Wang, Y.-J., & Zhu, Y.-Q. (2019). From manual to intelligent: A

review of input data preparation methods for geographic modeling. ISPRS International Journal of Geo-

Information, 8, 376. Available from https://doi.org/10.3390/ijgi8090376.

Hubbard, S. S., Varadharajan, C., Wu, Y., Wainwright, H., & Dwivedi, D. (2020). Emerging

technologies and radical collaboration to advance predictive understanding of watershed

hydrobiogeochemistry. Hydrological Processes, 34, 3175�3182. Available from https://doi.org/

10.1002/hyp.13807.

IBM Research. (2019). State of California tackles drought with IoT & blockchain [WWW document]. IBM

Newsroom. ,https://newsroom.ibm.com/2019-02-08-State-of-California-Tackles-Drought-with-IoT-

Blockchain. Accessed 09.07.21.

236 Chapter 11

https://doi.org/10.1145/3192335
https://doi.org/10.1146/annurev-earth-071719-055251
https://doi.org/10.1038/d41586-019-03711-0
https://doi.org/10.5194/gmd-2021-97
https://doi.org/10.1016/j.envsoft.2010.11.013
https://doi.org/10.1016/j.envsoft.2010.11.013
https://doi.org/10.2166/hydro.2007.023
https://doi.org/10.21433/B3118cz973mw
https://doi.org/10.1126/science.162.3859.1243
https://www.investopedia.com/terms/c/common-pool.asp
https://www.investopedia.com/terms/c/common-pool.asp
https://doi.org/10.1016/j.jhydrol.2007.09.056
https://doi.org/10.1016/j.jhydrol.2007.09.056
http://refhub.elsevier.com/B978-0-323-99875-8.00012-4/sbref37
http://refhub.elsevier.com/B978-0-323-99875-8.00012-4/sbref37
https://doi.org/10.3389/feart.2019.00067
https://doi.org/10.1111/1752-1688.12363
https://doi.org/10.3390/ijgi8090376
https://doi.org/10.1002/hyp.13807
https://doi.org/10.1002/hyp.13807
https://newsroom.ibm.com/2019-02-08-State-of-California-Tackles-Drought-with-IoT-Blockchain
https://newsroom.ibm.com/2019-02-08-State-of-California-Tackles-Drought-with-IoT-Blockchain


Ilie, C. M., & Gogu, R. C. (2019). Current trends in the management of groundwater specific geospatial

information. E3S Web of Conferences, 85, 07020. Available from https://doi.org/10.1051/e3sconf/

20198507020.
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